首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave force coefficients for horizontally submerged rectangular cylinders   总被引:1,自引:0,他引:1  
The results of wave force measurements carried out on a section of horizontally submerged rectangular cylinders, which are used as pontoons in many offshore structures, are reported in this paper. Two rectangular cylinders with aspect (depth–breadth) ratios equal to 12 and 34 and a square section (aspect ratio=1.0) cylinder are chosen for this study. Experiments are carried out in a wave tank at a water depth of 2.2 m at low Keulegan–Carpenter (KC) numbers to measure the horizontal and vertical wave forces acting on a 100 mm section, located at mid-length of the cylinders. For each cylinder, tests are carried out for two relative depths of submergence of 2.68 and 4.68. Measured wave forces in regular and irregular waves are then used to derive drag (CD) and inertia coefficients (CM). The analysis show that at very low KC numbers the inertia coefficients for all cylinders approached the potential flow values for both horizontal and vertical forces. The drag coefficients at low KC numbers exhibited large values and they decreased sharply with increase in KC number. For the square cylinder, where relatively a large KC number is obtained compared to other cylinders, inertia coefficients reached minimum values in the range of KC of about 3–4 and increased thereafter. In this range, CM values are about 50% or so, smaller than the same at KC close to zero. The results of the experiments reveal that aspect ratio has large influence on hydrodynamic coefficients.  相似文献   

2.
Computer simulations of steady plus low-amplitude oscillatory flow about a circular cylinder are reported at a fixed Reynolds number of 150 based on the steady component. The conventional Keleugan–Carpenter number based on the oscillatory component is fixed at π/5. The oscillation frequency is varied so as to study a wide spectrum of flows where inertial forces dominate at one end and viscous drag forces at the other as a function of the modified Keleugan–Carpenter number. The hydrodynamic force on the cylinder in-line with the flow direction is represented by Morison's equation and an extended version with three terms. The drag and inertia coefficients in Morison's equation are determined by least-squares fits to data directly computed from integration of skin friction and pressure distributions around the periphery of the cylinder. The root-mean-square value of the residue of reconstructed minus directly-computed forces varies between 2 and 41% depending on the flow parameters. Comparable results can be obtained with a semi-theoretical approach using inviscid inertia and quasi-steady viscous drag terms. Physical explanations for the variation of the force coefficients are provided and implications for pertinent flow–structure interactions are discussed.  相似文献   

3.
A quasi-steady model is presented to predict the transverse force on cylinders in waves and oscillating flows. The model assumes that the Strouhal number, based on the instantaneous flow velocity, is constant, taking a value of 0.2. It is also assumed that the lift coefficient, based on the instantaneous dynamic pressure of the flow, is constant over a half cycle of the flow. The predictions of the model are compared with measurements taken on a circular cylinder in planar oscillatory flow over the Keulegan Carpenter number, KC, range from 5 to 53. The agreement between predicted and measured transverse forces is good at high KC but deteriorates at low KC. For high KC, it is shown that the model can be further improved if additional variables are introduced into the model equation.  相似文献   

4.
A horizontal, circular cylinder fitted with one bilge keel is forced to rotate harmonically around its axis. The bilge keel load and hull pressure distribution are investigated. A fully submerged condition (infinite fluid), and three partly-submerged conditions are considered. A two-dimensional numerical study is performed, and the results are validated against recently published experimental data by van’t Veer et al. [30]. In addition, comparisons for mass and drag coefficients are also made with experimental data for plate in infinite fluid (Keulegan and Carpenter [8]), and wall-mounted plate (Sarpkaya and O’Keefe [9]) in oscillatory flow.A Navier–Stokes solver based on the Finite Volume Method is adopted for solving laminar flow of incompressible water. The free-surface condition is linearized by neglecting the nonlinear free-surface terms and the influence of viscous stresses in the free surface zone, while the body-boundary condition is exact. This simplified modeling of the problem required the mesh to be fine only around the bilge keels, leading to a total number of cells around N  1 ×104, which reduced computational cost significantly.The influence of draft and amplitude of oscillations on the bilge keel force and hull pressure distribution are considered. The bilge keel force is presented in terms of non-dimensional drag and mass coefficients including higher harmonic components. The numerical results are also compared with the industry standard empirical method for calculation of roll damping proposed by Ikeda et al. [4]. In general, a good agreement between the results of the present numerical method and the experimental data is obtained and the differences with those predicted by the empirical method are addressed.  相似文献   

5.
为研究四柱体布置情况下倒角半径变化对柱体绕流水动力特性的影响,使用Fluent软件,采用大涡模拟方法研究了在雷诺数Re=3 900下6种不同倒角半径的柱体在方形四柱体布置时的三维流场。在模型分析验证有效后,分析了柱体后方瞬时流场、水动力参数、时均流场的变化情况。分析结果表明:随着倒角半径的增大,上游柱体的平均阻力系数逐渐减小,下游柱体的平均阻力系数除了在R~+=0.1处增幅很大以外,其余均随倒角半径变大而平稳变大;各柱体的升力系数均方根变化趋势基本相同;R~+=0.1、0.5时,上下游两柱体的升力系数曲线相位相反,而在R~+=0.2、0.3和0.4时,上下游两柱体的升力系数曲线相位相同。  相似文献   

6.
《Applied Ocean Research》2004,26(3-4):147-153
A numerical study of the effect of the width of the computational domain on viscous oscillatory flow past a circular cylinder has been conducted, for Keulegan–Carpenter numbers ranging between 0.1 and 6 at a fixed frequency parameter equal to 50. The finite element method was used for the solution of the Navier–Stokes equations, in the formulation where the stream function and the vorticity are the field variables. Simulations for blockage ratios in the range between 0.10 and 0.50 were performed assuming frictionless flow at the outer boundaries, the blockage ratio being defined as the cylinder diameter divided by the width of the solution domain. The first set of simulations was carried out for a constant stream function along the horizontal boundaries. Then the procedure was repeated, for stream function values at the outer boundaries derived from the irrotational solution around a circular cylinder. This boundary condition relieves considerably the blockage effect on the flow pattern and on the drag coefficient of the in-line force.  相似文献   

7.
In this paper, a well-developed numerical model based on the immersed boundary (IB) method is used to study oscillatory flows over a bed with large-amplitude ripples in a systematic manner. The work shows that the complex flow over the rippled bed can be numerically dealt with in Cartesian coordinate by the IB method and that the IB method is able to provide main features of the flows near the ripples. An accurate simulation of vortices generation as a result of flow separation at the rippled bed is obtained. It is found that the oscillatory flows start to separate during the flow deceleration when the Keulegan–Carpenter (KC) number is small. The steady streaming for various ripple steepness is simulated and the criterion for separating the single and double structure streaming is also discussed. Moreover, a new type of steady streaming which consists of a pair of embedded recirculations in the vicinity of the ripple trough is obtained for relatively steep ripples in this work. The numerical results, including the steady streaming in particular, may be helpful to improve the understanding of the sediment transport and the seabed evolution with natural ripples under sea waves.  相似文献   

8.
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three non-dimensional parameters (Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients. The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.  相似文献   

9.
In this study, a three-dimensional numerical model is used to study the wave interaction with a vertical rectangular pile. The model employs the large eddy simulation (LES) method to model the effect of small-scale turbulence. The velocity and vorticity fields around the pile are presented and discussed. The drag and inertial coefficients are calculated based on the numerical computation. The calculated coefficients are found to be in a reasonable range compared with the experimental data. Additional analyses are performed to assess the relative importance of drag and initial effects, which could be quantified by the force-related Keulegan and Carpenter (KC) number: KCf=UT/(4πL). Here U is the maximum fluid particle velocity, T the wave period and L the length of structure aligned with the wave propagation direction. For small KCf, the effective drag coefficient is proportional to 1/KCf, provided the wavelength is much longer than the structural length. When wavelength is comparable to the structure dimension, the effective drag coefficient would be reduced significantly due the cancellation of forces, which has been demonstrated by numerical results.  相似文献   

10.
Use of the quadratic shear-stress law for estimating boundary drag requires specific knowledge of the magnitude of a drag coefficient, CD, and sectional mean velocity, u?. In previous attempts to adapt the relationship for use in studies of marine-sediment transport, the flow measurement has been standardized at a level 100 cm above the bed. The particularized value of the drag coefficient has been designated as C100.In the entrance area to Chesapeake Bay, Virginia, C100 has been found to range through unacceptably wide limits. Two-thirds of the values obtained are between 3.5 · 10?3 and 5.4 · 10?2. Mean C100 for the area is 1.3 · 10?2 as compared to 3 · 10?3 for tidal channels within Puget Sound, Washington.Present data suggest that, given a moveable bed, a size hierarchy of mobile bed forms, time-varying flow, and a lack of equilibrium between flow and bed, C100 changes continuously with boundary shear stress.Accurate evaluation of boundary shear stress in tidal entrances with high flow rates and mobile beds presently requires measurement of velocity profiles.  相似文献   

11.
《Coastal Engineering》2004,51(2):103-118
In this work, a model for wave transformation on vegetation fields is presented. The formulation includes wave damping and wave breaking over vegetation fields at variable depths. Based on a nonlinear formulation of the drag force, either the transformation of monochromatic waves or irregular waves can be modelled considering geometric and physical characteristics of the vegetation field. The model depends on a single parameter similar to the drag coefficient, which is parameterized as a function of the local Keulegan–Carpenter number for a specific type of plant. Given this parameterization, determined with laboratory experiments for each plant type, the model is able to reproduce the root-mean-square wave height transformation observed in experimental data with reasonable accuracy.  相似文献   

12.
The main purpose of this study is to establish a better understanding of the relationship between drag reduction and surface roughness. Experiments were conducted to measure the force and flow characteristics of a circular cylinder with different types of artificial surface roughness over the range 6 × 103 < Re < 8 × 104 (Re is based on the cylinder diameter D). The roughness cylinder was formed by covering the exterior surface of the cylinder with uniformly distributed (1) sandpaper, (2) netting, and (3) dimples. The roughness coefficient ranged from k/D = 0.0028 to 0.025 (k is the roughness height). A detailed quantitative measurement of the flow field around the cylinder using Particle Imaging Velocimetry (PIV) was carried out. The hydrodynamic force coefficients (drag and lift) of the rough cylinders are compared against those of a smooth cylinder measured under the same flow conditions. It is found that certain configuration of surface roughness significantly reduces the mean drag coefficient of the cylinder, particularly at large Reynolds numbers. In addition, the root-mean-square (r.m.s.) lift coefficient of the rough cylinders is considerably lower than that of a smooth cylinder.  相似文献   

13.
The most widely used mathematical model to represent flow-induced in-line forces on structures is based on the Morison1 equation. The present paper investigates the validity of using an extension of Morison's equation for non-stationary structures, by comparing predictions with results from a simple laboratory experiment. An elastically-mounted circular cylinder is placed in the sinusoidal flow of a U-tube, and responds in-line with the flow. Cylinder forces and responses are recorded over a range of Keulegan Carpenter numbers up to 35. An equation of motion is solved simply by using relative coordinates and by employing equivalent linearisation. The linear results are compared over a wide variation of parameters with solutions using the full nonlinear equation. Thereafter experimental results are compared with linear predictions.  相似文献   

14.
This paper presents the results of an experimental investigation on the variation in the tension and the distribution of drag force coefficients along flexible risers under vortex-induced vibration (VIV) in a uniform flow for Reynolds numbers (Re) up to 2.2×105. The results show that the mean tension is proportional to the square of the incoming current speed, and the tension coefficient of a flexible riser undergoing VIV can be up to 12. The mean drag force is uniformly and symmetrically distributed along the axes of the risers undergoing VIV. The corresponding drag coefficient can vary between 1.6 and 2.4 but is not a constant value of 1.2, as it is for a fixed cylinder in the absence of VIV. These experimental results are used to develop a new empirical prediction model to estimate the drag force coefficient for flexible risers undergoing VIV for Reynolds number on the order of 105, which accounts for the effects of the incoming current speed, the VIV dominant modal number and the frequency.  相似文献   

15.
A parametric study was carried out to investigate the hydrodynamics of a cylindrical wave energy absorber. Established methods of hydrodynamic analysis were applied to the case of a damped vertically oriented cylinder pivoted near the sea floor in intermediate depth water. The simple geometry provides a canonical reference for more complex structure shapes and configurations that may be considered for either wave energy conversion or wave energy absorption. The study makes use of the relative velocity Morison equation, with force coefficients derived from radiation and diffraction theory. Viscous effects were accounted for by including a drag term with an empirically derived coefficient, CD. A non-linear first-order formulation was used to calculate the cylinder motion response in regular waves. It was found that the non-linear drag term, which is often neglected in studies on wave energy conversion, has a large effect on performance. Results from the study suggest a set of design criteria based on Keulegan–Carpenter (KC) number, ratio of cylinder radius to water depth (a/h), and ratio of water depth to wavelength (h/L). Respectively, these parameters account for viscous, wave radiation, and water depth effects, and optimal ranges are provided.  相似文献   

16.
在利用傅氏级数法模拟波、流场中水平圆柱上的升力时,其傅氏系数及初相位的选取是问题的关键。本文进行了近底水平圆柱在振荡流场中的物理模型实验,采用傅氏级数法推求各参数,得到不同Kc数及间隙比(e/D)情况下的各种参数值。实验要素范围Kc数为5-20,Re数为2500-10000,间隙比为0.1-1.0。  相似文献   

17.
18.
The skin friction of a two-dimensional planing flat plate is made up of two opposing components; a drag force from the flow aft of the stagnation line and an opposing thrust force from the jet flow. This paper is concerned only with the drag term and the wake velocity defect which it causes in the water behind the transom.It is concluded that the skin friction is less than would be expected from a flat plate at ambient static pressure (Dfo say) and is approximately equal to Dfo (1 ? CR), where CR is the normal force coefficient based on wetted area. The wake velocity decrement due to this drag is found to be significant, particularly for surface piercing propellers.  相似文献   

19.
《Coastal Engineering》1999,37(2):123-148
The Navier–Stokes equations and the exact free surface boundary conditions are solved to simulate wave deformation and vortex generation in water waves propagating over a submerged dike. Incident waves are generated by a piston-type wavemaker set up in the computational domain. Numerical results are compared with experimental data in order to confirm the validity of the numerical model. The fast Fourier transform and a wave resolution technique are applied to decompose the transformed waves and the higher harmonics. Effects of different parameters on wave transformation and vortex generation are studied systematically. These parameters include the Ursell number, the Keulegan–Carpenter number, the water depth ratio, the Reynolds number, the length aspect ratio of the dike, and the type of dike.  相似文献   

20.
不同倒角半径柱体绕流数值模拟及水动力特性分析   总被引:3,自引:1,他引:2  
为研究倒角半径变化对柱体绕流水动力特性的影响,本文使用Fluent软件,采用大涡模拟对雷诺数Re=3 900下的6种不同倒角半径的三维柱体进行了研究。在模型验证基础上,分析了由方柱渐变到圆柱过程中后方流场速度的时均特性及瞬时涡脱落变化规律,给出了不同倒角半径下的升、阻力系数值及无量纲涡脱频率St数。分析结果表明:平均阻力系数随倒角半径的增加而降低,在倒角半径为0.2D时下降速率最大,相较方柱降幅达到50%;升力系数均方根在倒角半径为0.1D~0.2D时变化最显著,减小约93%; St数随倒角半径增加而增大,在倒角半径为0.4D时可达到最大值;回流区长度随倒角半径的增加呈先增大后减小的趋势,其长度在倒角半径为0.2D时达到最大;尾涡宽度在倒角半径为0.0D最大,后随倒角半径增加逐渐下降,且当倒角半径大于0.2D以后变化不大。本文研究结果可为柱体绕流研究及相关工程应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号