首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the simulation of the flow of a viscous incompressible Newtonian liquid with a free surface. The Navier–Stokes equations are formulated using a streamline upwind Petrov–Galerkin scheme, and solved on a Q-tree-based finite element mesh that adapts to the moving free surface of the liquid. Special attention is given to fitting the mesh correctly to the free surface and solid wall boundaries. Fully non-linear free surface boundary conditions are implemented. Test cases include sloshing free surface motions in a rectangular tank and progressive waves over submerged cylinders.  相似文献   

2.
A train of surface waves is normally incident upon a cylinder that is totally submerged in a body of deep water. Details are given for the cases of circular or elliptic cross-sections, with estimates for the transmission and reflection constants when the cylinder is many wavelengths below the surface. Corresponding results are suggested for arbitrary smooth cylinders.  相似文献   

3.
A series of laboratory experiments was carried out to investigate the strong reflection of regular water waves over a train of submerged breakwaters. Rectangular and trapezoidal shapes of submerged breakwaters are employed and compared for reflecting capability of incident waves. Measured reflection coefficients of regular waves over impermeable submerged breakwaters are verified by comparing with those of the eigenfunction expansion method. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The trapezoidal shape is recommended for a submerged breakwater in terms of reflecting capability and practical application.  相似文献   

4.
The interaction of surface water waves with submerged breakwaters   总被引:1,自引:0,他引:1  
This paper concerns the behaviour of nonlinear regular waves interacting with rectangular submerged breakwaters. A new series of experimental results is presented and compared with numerical calculations based upon a Boundary Element Method (BEM) that utilises multiple fluxes to deal with the discontinuities encountered at the corners of the domain. Specifically, comparisons concern both the spatial water surface profiles at various times and the spatial evolution of the harmonics generated by the breakwaters, the latter being an important focus for the paper. The BEM is shown to accurately model both the water surface profile and the harmonic generation, provided the breakwater width is sufficient to ensure that flow separation is not a controlling influence. Furthermore, evidence is provided to confirm that reflection from rectangular submerged breakwaters is fundamentally a linear phenomenon.  相似文献   

5.
6.
Based on the linear diffraction theory, an investigation is made on the interaction of water waves with a completely submerged sphere in water of finite depth in this paper. The method of multipole expansions is used to obtain the fluid velocity potential in the form of double series of the associated Legendre functions with the unknown coefficients of the infinite set of infinite matrix equations. The truncation property of the matrices and the convergence of the multipole series coefficients are investigated for various wavelengths and depths. The systematic numerical simulation, based on our analytical solution, is carried out and the fields of the hydrodynamic diffraction pressure and fluid velocity around the sphere, the three-dimensional free surface elevation, and total exciting forces acting on the sphere are graphically presented for a wide range of the body submergences, ocean depths and wavelengths.  相似文献   

7.
8.
One of the major methods available for investigating the interaction of water waves with arbitrarily shaped structures is based on the classical theory of Green's functions. For multiple bodies, however, this technique can become expensive in terms of both computer storage and execution time and it is desirable for special geometrics where possible, to seek simpler methods. In this paper, the radiation and scattering of surface waves by a group of parallel, horizontal, circular cylinders, submerged in deep water is studied using a method involving multipole potentials. The method is developed for any number of submerged, parallel, horizontal cylinders with arbitrary positions and radii. In particular, hydrodynamic coefficients are determined for various configurations of two and three cylinders and a comparison is made with results obtained for a cylinder in isolation.  相似文献   

9.
Bragg reflection of water waves by multiple floating horizontal flexible membranes is investigated based on the linear wave theory and the assumption of small membrane response. Under the floating horizontal membranes, periodical submerged rectangular bars are arranged on the flat seabed. The total reflection and transmission coefficients are obtained by using the eigenfunction expansion method and the wide spacing approximation. The calculated coefficients are validated with the results available in the literature, which shows that the present method is applicable. The characteristics of Bragg reflection are systematically investigated by changing various parameters including the height of the rectangular bars, the number, the tension, the spacing, and the length of the flexible membranes. The results can help designing multiple floating horizontal flexible membranes as effective floating breakwaters by taking advantage of Bragg reflection.  相似文献   

10.
The decomposition of a monochromatic wave over a submerged plate is investigated experimentally in a wave flume. Bound and free higher harmonic modes propagating upstream and downstream the structure are discriminated by means of moving resistive probes. The first-order analysis shows a resonant behaviour linked to the ratio of the plate's width and the fundamental mode wavelength over the plate. The second-order analysis shows an energy transfer from the fundamental mode towards free harmonics propagating downstream the structure. This transfer is linked to the ratio of the width of the plate and the bound harmonic wavelength over the plate. We also performed experiments with a submerged step to compare the efficiency of both structures. The submerged plate is shown to be a more efficient breakwater than the step, at the first as well as the second-order.  相似文献   

11.
In this work, we carried out an asymptotic analysis, up to the second order in a regular expansion, of the interaction of linear long waves with an impermeable, fixed, submerged breakwater composed of wavy surfaces. Below the floating breakwater, there is also a step with a wavy surface. The undulating surfaces are described by sinusoidal profiles. The effects of three different geometric parameters — the amplitude of the wavy surfaces and the submerged length and width of the structure — on the reflection and transmission coefficients are analyzed. The hydrodynamic forces are also determined. The governing equations are expressed in dimensionless form. Using the domain perturbation method, the small wavy surfaces of the breakwater are linearized. The wavy surfaces of the breakwater generate larger values of the reflection coefficient than those obtained for breakwaters with flat surfaces, and the largest values of this coefficient are obtained when the length of the breakwater is of the same order of magnitude as the wavelength. The asymptotic solution is compared with the theoretical solutions that have been reported in the specialized literature and with a numerical solution. The present mathematical model can be used as a practical reference for the selection of the geometric configuration of a submerged floating breakwater under shallow flow conditions.  相似文献   

12.
Experiments in a wave flume have been performed to analyse the nonlinear interaction between regular gravity waves and a submerged horizontal plate used as breakwater. A new method, based on the Doppler shift generated by a moving probes, has been used to discriminate the incident fundamental mode and the reflected fundamental mode. The relationships of the reflection and transmission coefficients to the wave number at different submergence depth ratios are presented. The accurate discrimination, by this method, of the phase-locked and free modes allows the quantification of the higher harmonics generated by the breakwater and the analysis of the nonlinear interaction between the waves and the submerged plate. The transfer of energy from the fundamental mode to higher harmonics is very large in the cases of small submergence depth ratios. The vortices produced at the edges take part in the production of higher harmonics by interaction with the free surface but involve, at the same time, a dissipation process that increases the efficiency of the breakwater.  相似文献   

13.
Felice Arena   《Ocean Engineering》2002,29(4):359-372
To the first order in a Stokes expansion, the pressure force exerted by a sea state on a large horizontal cylinder represents a stationary random Gaussian process. A relationship is obtained between the spectrum of this process and the wave spectrum. As a consequence, the basic statistical properties of the height and period of the individual waves of the force-process are also obtained. It is proven that these statistical properties agree very well with the data from a small scale field experiment.  相似文献   

14.
Direct numerical simulations are performed to study the transformation of internal solitary waves (ISWs) of depression type propagating over an underwater ridge in a two-layer fluid system. Bottom ridges with relatively smooth vertex are employed to represent sills in natural lakes and oceans. Consistent with previous experiments, three interaction types (weak, moderate and strong) are observed to be based on the energy loss. In addition, the moderate interaction are found to be categorized into transmitted and reflected type according to their distinct transformation process. General flow characteristics for ISW–ridge interaction in the benthic boundary layer and in the pycnocline is monitored and analysed. A modified degree of blocking Bm considering both the nonlinear effect of incident ISWs and the blockage effect of the submerged ridge is proposed. Different ISW–ridge interactions are discovered to be linked with Bm. Maximum wave-induced velocities, wave energy losses, reflected and transmitted wave amplitudes are found to have a self-similar feature with Bm. The maximum energy loss is up to 35% and the maximum wave-induced velocity can reach 1.8 times of the phase speed of the incident ISW. Empirical equations are obtained based on the data fitting to predict some useful physical parameters during ISW–ridge interaction.  相似文献   

15.
This study examines the Bragg reflection of water waves by multiple submerged semi-circular breakwaters. The multipole expansions combined with the shift of polar coordinates are used to develop full linear potential solutions of the problem. In the full solutions, the obliquely and normally incident waves are independently considered. Experimental tests are carried out to measure the reflection and transmission coefficients of the breakwaters at different wave periods and body spacings. The analytical results are in reasonable agreement with the experimental data. The peak reflection coefficient of multiple submerged semi-circular breakwaters and the bandwidth of Bragg reflection are carefully examined by numerical examples. Some significant results for practical application are discussed.  相似文献   

16.
The in-line response of a vertical flexibly mounted cylinder in regular and random waves is reported.Both theoretical analyses and experimental measurements have been performed.The theoretical predictions are based on the Morison equation which is solved by the incremental harmonic balance method.Experiments are then performed in a wave flume to determine the accuracy of the Morison equation in predicting the in-line response of the cylinder in regular and random waves.The interaction between waves and vibrating cylinders are investigated.  相似文献   

17.
淹没矩形防波堤透反射系数特性研究   总被引:2,自引:1,他引:2  
采用解析方法研究了斜向入射波作用下淹没矩形防波堤的透反射系数特性.首先利用特征函数展开法导出了绕射势函数的分析解和透反射系数的计算公式,然后利用边界元方法验证了解析解,在此基础上利用解析解分析了若干工况下的防波堤透反射特性.计算结果表明,淹没矩形防波堤截面的宽度、高度和相对位置以及入射角的改变都不同程度影响反射系数和透射系数.在中等深度条件下,对于一定频率的波浪,位置和尺寸适当的淹没矩形堤可以反射大部分斜向入射波.研究结果对设计淹没的矩形防波堤具有重要的参考价值.  相似文献   

18.
Wave force coefficients for horizontally submerged rectangular cylinders   总被引:1,自引:0,他引:1  
The results of wave force measurements carried out on a section of horizontally submerged rectangular cylinders, which are used as pontoons in many offshore structures, are reported in this paper. Two rectangular cylinders with aspect (depth–breadth) ratios equal to 12 and 34 and a square section (aspect ratio=1.0) cylinder are chosen for this study. Experiments are carried out in a wave tank at a water depth of 2.2 m at low Keulegan–Carpenter (KC) numbers to measure the horizontal and vertical wave forces acting on a 100 mm section, located at mid-length of the cylinders. For each cylinder, tests are carried out for two relative depths of submergence of 2.68 and 4.68. Measured wave forces in regular and irregular waves are then used to derive drag (CD) and inertia coefficients (CM). The analysis show that at very low KC numbers the inertia coefficients for all cylinders approached the potential flow values for both horizontal and vertical forces. The drag coefficients at low KC numbers exhibited large values and they decreased sharply with increase in KC number. For the square cylinder, where relatively a large KC number is obtained compared to other cylinders, inertia coefficients reached minimum values in the range of KC of about 3–4 and increased thereafter. In this range, CM values are about 50% or so, smaller than the same at KC close to zero. The results of the experiments reveal that aspect ratio has large influence on hydrodynamic coefficients.  相似文献   

19.
Evolution of waves and currents over a submerged laboratory shoal   总被引:1,自引:0,他引:1  
The vertically-integrated effect of interaction between waves and wave-induced currents on wave transformation over a submerged elliptic shoal was investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269–284.]. The numerical simulations were performed using two numerical wave-current model systems: one, a combination of the wave model SWAN and the current model SHORECIRC, and the other, a combination of the wave model REF/DIF and the same current model. A time-dependent, phase-resolving wave and current model, FUNWAVE, was also utilized to simulate the experiment. In the simulations, the developed wave-induced currents defocused waves behind the shoal and brought on a wave shadow zone that showed relatively low wave height distributions. For the breaking case of monochromatic waves, the wave heights computed using FUNWAVE showed good agreement with the measurements and the resulting wave-induced currents showed a jet-like velocity distribution in transverse direction. And the computed results of the two model combinations agreed better with the measurements than the computed results obtained by neglecting wave-current interaction. However, it was found that for the case in which transverse interference pattern caused by refracted waves was strong, REF/DIF-SHORECIRC did not correctly evaluate radiation stresses, the gradients of which generate wave-induced currents. SWAN-SHORECIRC, which cannot deal with the interference patterns, predicted a jet-like wave-induced current. For breaking random wave cases, the computed results of the two model combinations and FUNWAVE agreed well with the measurements. The agreements indicate that it is necessary to take into account the effect of wave-induced current on wave refraction when wave breaking occurs over a submerged shoal.  相似文献   

20.
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号