首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The problem of propagation of obliquely incident surface water waves over a pair of asymmetrical rectangular trenches in a channel of finite depth is examined for its solution. The mathematical problem is handled for its numerical solution with the aid of a system of singular integral equations of first kind. The resulting integral equations are solved numerically by using suitably designed polynomial approximations of the unknown functions. System of linear algebraic equations is obtained by utilizing the zeros of Chebyshev polynomial of first kind as collocation points and hence the occurrence of ill-conditioned matrix is avoided. The effectiveness of the pair of trenches is studied by analyzing the physical quantities namely the reflection and transmission coefficients. As a special limiting case, the results for a single trench problem are derived and are found to be in excellent agreement with the results available in the literature. The effect of various parameters are analyzed through different graphs for a pair of asymmetrical trenches. The energy balance relation is derived and used to check the accuracy of numerical results.  相似文献   

2.
A standard inverse problem in underwater acoustics is the reconstruction of the ocean subbottom structure (e.g., the density and sound speed profiles) from an aperture- and bandlimited knowledge of the reflection coefficient. In this paper we describe an inverse solution method due to Candel et al. [12] which is based on the scattering of acoustic plane waves by a one-dimensional inhomogeneous medium. As a consequence of applying the forward scattering approximation to a local wave representation of the acoustic field, they obtain an expression for the reflection coefficient in the form of a nonlinear Fourier transform of the logarithmic derivative of the local admittance. Inversion of this integral transform enables the recovery of the admittance profile via the numerical integration of two first-order differential equations which require as reflection data a single impulse response of the medium. Separate recovery of both the density and sound speed profiles requires two impulse responses for two different grazing angles. In this case, four differential equations need to be integrated instead of two. To illustrate the capability of the method, we present numerical reconstructions which are based on synthetic reflection data for a geoacoustic model that represents the acoustic properties of the surficial sediments for a site in the Hatteras Abyssal Plain.  相似文献   

3.
完全非线性孤立波的直墙反射   总被引:2,自引:2,他引:0  
报道了应用边界积分方法模拟完全非线性孤立波的传播与直墙反射,给出了波形演变过程。结果表明,本模型对计算孤立波的传播与直墙反射是有效的。三阶Boussinesq方程的孤立波解比低阶方程的孤立波解更接近完全非线性的数值解.当来波波高增大时,孤立波直墙反射的相位滞后变小。若考虑大波高孤立波的直墙反射或波——波相互作用,一阶理论预报的相位滞后往往低估实际情况。  相似文献   

4.
Numerical analyses for the Bragg resonant reflection of carrier waves associated long waves due to sinusoidally varying seabeds are performed by using a set of coupled ordinary differential equations derived from the Boussinesq equations. The Boussinesq equations are firstly approximated with the Fourier decomposition. The coupled governing equations are then derived and used to simulate evolution of both short and long wave components. It is also found that wave groups are generated by two carrier waves with slightly different frequencies. The wave energy of the initial wave components is transferred to other harmonic components during propagation over a long distance. Evolution and reflection of both short and long waves were largely affected by nonlinearity.  相似文献   

5.
Enhancements for the Bragg reflection are introduced for three sets of 2D higher order Boussinesq equations to improve the prediction of the Bragg reflection. The extension of the approach to other sets of Boussinesq equations is discussed. The analytical solutions for the Bragg reflection over an infinite number of sinusoidal bars are derived for these Boussinesq models and compared to the exact theoretical solution in order to determine the optimized values of the parameters in the new enhancement terms. Numerical simulations are also carried out for the Bragg reflection over a finite number of sand bars and compared with corresponding measurements to validate the enhancements. Comparisons with other forms of Boussinesq models are made to discuss the applicability of different forms of Boussinesq models to rapidly varying topography with sand bars. The effects of the mild slope assumption on the prediction of Bragg reflection and of wave reflection on a plane self are also discussed.  相似文献   

6.
Wave reflection and diffraction due to the presence of a detached breakwater are studied with the aid of directional wave fields. At first, experiments were carried out for the case where a breakwater is the sole factor affecting the wave field. It is shown that, estimated directional spectra in front of a detached breakwater can be separated into two parts in the spatial domain. Denoting these as the incident and reflected part of the total energy, an estimate of the reflection coefficient can be obtained. An empirical equation is proposed. This equation relates the reflection coefficients with the distances of the measuring stations away from the breakwater, as well as directionality of the wave field. This equation was then applied to the experiments where the fishing harbour Ba-Do-Zhi (BDZ) was used as model. It is shown that favorable results are obtained. On the other hand, diffraction due to the detached breakwater was also studied in a similar way. It is shown that predictions based on the empirical equation are in quantitative agreements with measurements. It is proposed that these empirical equations can be used in engineering applications.  相似文献   

7.
A Boussinesq model for simulating wave and current interaction   总被引:1,自引:0,他引:1  
A new formulation of a pair of Boussinesq equations for three-dimensional nonlinear dispersive shallow-water waves is presented. This set of model equations permits spatial and temporal variations of the bottom topography and the presence of uniform currents. The newly derived equations are used to simulate the propagation of cnoidal waves and their interactions with a uniform current in a wave channel. The modified Euler's predictor-corrector algorithm for time advancing and a central difference representation for the space derivatives are applied to the computation of the basic equations. A set of open boundary conditions is developed to effectively transmit the cnoidal waves out of the computational domain. It is found that, as expected, the wave length decreases with an opposing current and increases with a following current. The wave height increases in magnitude with an opposing current and decreases with a following current. The Mach reflection due to oblique cnoidal waves propagating into an open channel with an opposing current is also investigated. Due to the opposing current, the wave patterns are compressed into smaller saddle-like regions in comparison with the Mach reflection without current effect.  相似文献   

8.
在二阶 Boussinesq 方程基础上,通过引入含水深导数项对该方程进行了理论上的改进,使得该方程在应用于无限沙坝 Bragg反射问题时与理论解析解在更大范围内符合.基于该改进的高阶 Boussinesq 方程,在非交错网格下建立了混合 4 阶的Adams-Bashforth- Moulton 格式的数学模型.将数值模型应用到有限个连续沙坝上波浪传播变形问题的数值模拟中,通过两点法给出数值波浪反射系数,将这些反射系数与已有的实验数据进行对比,对比表明改进后的模型计算出的反射系数与实验结果吻合更好,这验证了本文理论改进的有效性.  相似文献   

9.
Hydrodynamic characters on a horizontal, thin, rigid plate located beneath the free surface are numerically investigated. Assuming a linear, time-harmonic potential flow and utilizing Green identity, the governing Laplace equation can be simplified into Fredholm integral equation ofthe second kind. Supposing linear-order discontinuous elements along intersecting vertical boundaries, and by use of the boundary element method, numerical solution about source strength distribution on the plate can be changed into a series of algebraic equations. The 3D Green function is introduced to set up the integral equations, and the GMRES solver is performed for solving the large dense linear system of equations. The added-mass, damping force and exciting force are evaluated directly from the equations. It is found that the added-mass coefficient becomes negative for a range of frequencies when the plate is sufficiently close to the free surface.  相似文献   

10.
《Coastal Engineering》2001,42(1):87-101
Water wave refraction–diffraction within a porous medium on an undulating seabed is considered based on linear wave theory. Using the model of wave-induced flow within a porous medium and Galerkin eigenfunction expansions, refraction–diffraction equations for surface waves are derived. With these equations, the wave reflection from a porous structure on a sloping beach is investigated and numerical results of reflection coefficients are obtained. A comparison between the present results with those in the literature is made for a special case and the agreement is satisfactory. This structure can be viewed as an idealized model of rubble-mound seawalls along coastlines.  相似文献   

11.
The transformation of irrotational surface gravity waves in an inviscid fluid can be studied by time stepping the kinematic and dynamic surface boundary conditions. This requires a closure providing the normal surface particle velocity in terms of the surface velocity potential or its tangential derivative. A convolution integral giving this closure as an explicit expression is derived for linear 1D waves over a mildly sloping bottom. The model has exact linear dispersion and shoaling properties. A discrete numerical model is developed for a spatially staggered uniform grid. The model involves a spatial derivative which is discretized by an arbitrary-order finite-difference scheme. Error control is attained by solving the discrete dispersion relation a priori and model results make a perfect match to this prediction. A procedure is developed by which the computational effort is minimized for a specific physical problem while adapting the numerical parameters under the constraint of a predefined tolerance of damping and dispersion error. Two computational examples show that accurate irregular-wave transformation on the kilometre scale can be computed in seconds. Thus, the method makes up a highly efficient basis for a forthcoming extension that includes nonlinearity at arbitrary order. The relation to Boussinesq equations, mild-slope wave equations, boundary integral equations and spectral methods is briefly discussed.  相似文献   

12.
The hydrodynamic efficiencies of caisson-type vertical porous seawalls used for protecting coastal areas were calculated in this study. Physical models were developed to compare the wave reflection from vertical plane, semi-porous, and porous seawalls caused by both regular and random waves. Tests were carried out for a wide range of wave heights, wave periods, and different water depths (d=0.165, 0.270 and 0.375 m). The performance regarding the reflected waves from porous and semi-porous seawalls showed improvement when compared with those from the plane seawall. The reflection coefficients of the porous and semi-porous seawalls were calculated as 0.6 and 0.75, respectively, while the coefficient for the fully reflecting plane vertical wall was significantly higher (0.9). It was also observed that the reflection coefficient decreases with increase in wave steepness and relative water depth. In addition, the reduction in the reflection coefficient of porous and semi-porous seawalls, as compared to that of a plane seawall, was observed for both regular and random waves. New equations were also proposed to calculate the reflection coefficient of different types of seawalls with the aid of laboratory experiments. By verifying the developed equations using some other experimental data, it was validated that the equations could be used for practical situations. The results of the present study can be applied to optimize the design of vertical seawalls and for coastal protecting schemes.  相似文献   

13.
适合复杂地形的高阶Boussinesq水波方程   总被引:17,自引:4,他引:17  
邹志利 《海洋学报》2001,23(1):109-119
针对海底坡度较大(量阶为O(1))或海底曲率较大的复杂地形,建立了一个新型高阶Boussinesq水波方程.该方程可用于研究海底存在若干相互平行沙坝引起的Bragg反射问题.方程的水平速度沿水深的分布为四次多项式,色散性和变浅作用性能的精度比经典Boussinesq方程高了一阶.方程在浅水水域可以是完全非线性的.  相似文献   

14.
In this paper a number of related linearised water wave problems all involving thin submerged horizontal plates are considered. An integral transform approach is adopted and used to formulate integral equations in terms of unknown functions related to the jump in pressure across the plate. A Galerkin method is applied to the solution of these integral equations leading to elegant expressions for quantities of interest and a rapidly convergent numerical scheme. The focus of the paper is to demonstrate the application of this method in a number of settings including both two-dimensional problems applied to infinitely-long plates of constant width and three-dimensional problems involving circular discs. In the process we present new results including, for example, for wave-free forced oscillations of plates.  相似文献   

15.
Hung-Jie Tang  Chai-Cheng Huang   《Ocean Engineering》2008,35(17-18):1800-1810
We investigated the phenomenon of Bragg reflection of submerged structures in a 2D fully nonlinear numerical wave tank (NWT) based on the boundary integral equation method (BIEM). This model was validated by comparing not only the free surface elevations with that of the analytic solution of Stokes’ second-order wave theory, but also the reflection coefficients of submerged bars with that from other sources. The results of the present model show that the free surface nonlinear effect on the reflection coefficient of the primary resonance reduces significantly for all of the submerged bars considered. Finally, a case study is presented to demonstrate the reflecting capacity and overall performance of various submerged bars. Results indicate that sinusoidal bar has the maximum reflection capacity at the primary resonance, but the trapezoidal submerged bar is suggested as the better option for the practical convenience of coastal underwater construction.  相似文献   

16.
Bragg Reflection of Waves by Different Shapes of Artificial Bars   总被引:3,自引:1,他引:3  
HSU  Tai-Wen 《中国海洋工程》2002,16(3):343-358
Experiments are performed in a wave flume to demonstrate the Bragg reflection of linear gravity waves by artificial bars. Three different artificial bars with rectangular, triangular and rectified cosinoidal shapes are placed discretely on the seabed for measurement of the Bragg reflection. A series of experimental conditions including the number of bars, the pe-riodic bar spacing, the water depth and various wave conditions are tested. Key parameters influencing the Bragg resonances are investigated. The experimental data are compared with the values from both theoretical and numerical models. Some key parameters have proved to be effective in describing the primary resonances. Predictive equations of the charac-teristics for the Bragg reflection are proposed in this paper.  相似文献   

17.
章旭  勾莹  倪云林  滕斌  刘珍 《海洋学报》2016,38(1):133-142
基于线性势流理论,利用高阶边界元法研究了规则波在三维局部渗透海床上的传播。根据Darcy渗透定律推导出渗透海床的控制方程,利用渗透海床顶部和海底处法向速度和压强连续条件得到渗透海床顶部满足的边界条件。根据绕射理论,利用满足自由水面条件的格林函数建立了求解渗透海床绕射势的边界积分方程,采用高阶边界元方法求解边界积分方程进而得到自由水面的绕射势和波浪在局部渗透海床上传播过程中幅值的变化情况。通过与已发表的波浪对圆柱形暗礁的时域全绕射结果对比,证明了本文建立的频域方法计算波幅的正确性和有效性。利用这一模型研究了三维矩形渗透海床区域上波浪的传播特性,并分析了入射波波长、海床渗透特性系数等参数对波浪传播的影响。  相似文献   

18.
1 .IntroductionApile supportedplatesubmergedatacertaindepthunderseasurfacewasdevelopedasanewtypeofunderwaterbreakwaterfortheprotectionofcoastlinesandharbors .Thisisbecauseitdoesnothinderthewaterexchangebetweentheopenseaandtheprotectedareanordoesithindertheviewovertheopensea .Besides,itislessdependentonthegeotechnicalconditionsoftheseabottomwherethestructureistobeinstalled ;however,itscostishigh ,particularlyinrelativelydeepwaters .Formanyapplicationsitispossibletoreducethewavemotionintheprotec…  相似文献   

19.
The system of equations of motion describing the gravity wave propagation in a perfect heavy liquid layer is transformed into a new integral equation for the free surface elevations. In the limit cases, this integral equation describes the linear and nonlinear periodic waves as well as the known types of solitary waves. In this case a dispersion equation arises because perturbations of the second and higher orders of smallness are neglected. The integral equation allows for the propagation of invariable surface perturbations of arbitrary forms if their spatial spectrum is concentrated near small wave numbers (compared to the inverse wave amplitude). Several examples of solutions are presented.  相似文献   

20.
基于改进型的二阶Boussinesq方程,在交错网络下建立数值模型.利用模型模拟波浪在常水深情况下的传播,波浪反射系数均低于2%.利用该模型模拟波浪在平斜坡前的反射,并将数值结果与解析解进行对比.结果表明,对于相对水深较大情况,坡度较陡时模拟结果明显偏大;对 于相对水深较小情况,坡度超过1:1时,数值结果仍与解析解有....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号