首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of ∼ 240 km s−1. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of ∼ 750±50 km s−1, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas (Astrophys. J. 652, 763, 2006), we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.  相似文献   

2.
Combining the observations of STEREO satellites with the method of three-dimensional magnetohydrodynamic (MHD) numerical simulation, adopt- ing the magnetic ?eld data of the Wilcox Solar Observatory (WSO) and the model of potential ?eld source surface to build up the initial magnetic ?eld in solar corona, and adding a time-varying disturbance of pressure to the active re- gion on the solar surface, the study on the event of coronal mass ejection (CME) and extreme-ultraviolet (EUV) wave happened at 05:35 UT of 2009 February 13 has been performed. It is judged from the images of COR1/STEREO-A that the front speed of this CME is about 350 km·s−1, and the angular width is about 60°. By analyzing the running difference images of EUVI/STEREO-B at 195 ?A, it is found that the bright toroidal wavefront is spreading toward all directions around the active region, and behind the bright toroidal wavefront is a coronal dimming area. The positions of the wavefront in four directions are taken to perform linear ?ttings, it is known that the EUV wave speed is 247 km·s−1, and the EUV wave speed obtained from the numerical simulation is 245 km·s−1. After the IDL visualization program has been carried out for the calculated result, the structures of the bright loop and dimming area can be seen clearly. The numerical simulation is consistent with the satellite observation, which shows that the observed EUV wave may belong to the fast magnetosonic wave.  相似文献   

3.
We have analyzed radio type IV bursts in the interplanetary (IP) space at decameter–hectometer (DH) wavelengths to determine their source origin and a reason for the observed directivity. We used radio dynamic spectra from the instruments on three different spacecraft, STEREO-A, Wind, and STEREO-B, which were located approximately 90 degrees apart from each other in 2011?–?2012, and thus gave a 360 degree view of the Sun. The radio data were compared to white-light and extreme ultraviolet (EUV) observations of flares, EUV waves, and coronal mass ejections (CMEs) in five solar events. We find that the reason that compact and intense DH type IV burst emission is observed from only one spacecraft at a time is the absorption of emission in one direction and that the emission is blocked by the solar disk and dense corona in the other direction. The geometry also makes it possible to observe metric type IV bursts in the low corona from a direction where the higher-located DH type IV emission is not detectable. In the absorbed direction we found streamers, and they were estimated to be the locations of type II bursts, caused by shocks at the CME flanks. The high-density plasma was therefore most probably formed by shock–streamer interaction. In some cases, the type II-emitting region was also capable of stopping later-accelerated electron beams, which were visible as type III bursts that ended near the type II burst lanes.  相似文献   

4.
The SOL2001-12-26 moderate solar eruptive event (GOES importance M7.1, microwaves up to 4000 sfu at 9.4 GHz, coronal mass ejection (CME) speed 1446 km?s?1) produced strong fluxes of solar energetic particles and ground-level enhancement (GLE) of cosmic-ray intensity (GLE63). To find a possible reason for the atypically high proton outcome of this event, we study multi-wavelength images and dynamic radio spectra and quantitatively reconcile the findings with each other. An additional eruption probably occurred in the same active region about half an hour before the main eruption. The latter produced two blast-wave-like shocks during the impulsive phase. The two shock waves eventually merged around the radial direction into a single shock traced up to \(25~\mathrm{R}_{\odot}\) as a halo ahead of the expanding CME body, in agreement with an interplanetary Type II event recorded by the Radio and Plasma Wave Investigation (WAVES) experiment on the Wind spacecraft. The shape and kinematics of the halo indicate an intermediate regime of the shock between the blast wave and bow shock at these distances. The results show that i) the shock wave appeared during the flare rise and could accelerate particles earlier than usually assumed; ii) the particle event could be amplified by the preceding eruption, which stretched closed structures above the developing CME, facilitated its lift-off and escape of flare-accelerated particles, enabled a higher CME speed and stronger shock ahead; iii) escape of flare-accelerated particles could be additionally facilitated by reconnection of the flux rope, where they were trapped, with a large coronal hole; and iv) the first eruption supplied a rich seed population accelerated by a trailing shock wave.  相似文献   

5.
The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models (e.g., the Wang–Sheeley–Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS-Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.  相似文献   

6.
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (Astrophys. J. Lett. 716, L57, 2010) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave, including correspondence with the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches the expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.  相似文献   

7.
We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board Autonomy 2 (PROBA2) spacecraft on 27 January 2011. All three extreme ultraviolet (EUV) waves originate from the same active region, NOAA 11149, positioned at N30E15 in the STEREO-A field of view and on the limb in PROBA2. For the three primary EUV waves, we derive starting velocities in the range of ≈?310 km?s?1 for the weakest up to ≈?500 km?s?1 for the strongest event. Each large-scale wave is reflected at the border of the extended coronal hole at the southern polar region. The average velocities of the reflected waves are found to be smaller than the mean velocities of their associated direct waves. However, the kinematical study also reveals that in each case the ending velocity of the primary wave matches the initial velocity of the reflected wave. In all three events, the primary and reflected waves obey the Huygens–Fresnel principle, as the incident angle with ≈?10° to the normal is of the same magnitude as the angle of reflection. The correlation between the speed and the strength of the primary EUV waves, the homologous appearance of both the primary and the reflected waves, and in particular the EUV wave reflections themselves suggest that the observed EUV transients are indeed nonlinear large-amplitude MHD waves.  相似文献   

8.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

9.
The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remote-sensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.  相似文献   

10.
Based on a set of 11 CME events we study the impact of projection effects by tracking CME leading edge features in the plane of sky (traditional CME tracking) from combined STEREO-SECCHI and SOHO-LASCO observations up to 20R . By using CME observations from two vantage points and applying triangulation techniques, the source region location of the CME on the solar surface was determined (heliospheric longitude and latitude) to correct for projection effects. With this information, the directivity and “true” speed of a CME can be estimated in a simple way. The comparison of the results obtained from the spacecraft pairs SOHO-LASCO/STEREO-A and SOHO-LASCO/STEREO-B allows us to study the reliability of the method. The determined CME source region is generally coincident within ?10°.  相似文献   

11.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

12.
Although the dynamical evolution of magnetic clouds (MCs) has been one of the foci of interplanetary physics for decades, only few studies focus on the internal properties of large-scale MCs. Recent work by Wang et al. (J. Geophys. Res. 120, 1543, 2015) suggested the existence of the poloidal plasma motion in MCs. However, the main cause of this motion is not clear. In order to find it, we identify and reconstruct the MC observed by the Solar Terrestrial Relations Observatory (STEREO)-A, Wind, and STEREO-B spacecraft during 19?–?20 November 2007 with the aid of the velocity-modified cylindrical force-free flux-rope model. We analyze the plasma velocity in the plane perpendicular to the MC axis. It is found that there was evident poloidal motion at Wind and STEREO-B, but this was not clear at STEREO-A, which suggests a local cause rather than a global cause for the poloidal plasma motion inside the MC. The rotational directions of the solar wind and MC plasma at the two sides of the MC boundary are found to be consistent, and the values of the rotational speeds of the solar wind and MC plasma at the three spacecraft show a rough correlation. All of these results illustrate that the interaction with ambient solar wind through viscosity might be one of the local causes of the poloidal motion. Additionally, we propose another possible local cause: the existence of a pressure gradient in the MC. The significant difference in the total pressure at the three spacecraft suggests that this speculation is perhaps correct.  相似文献   

13.
A distinct magnetic cloud (MC) was observed in-situ at the Solar TErrestrial RElations Observatory (STEREO)-B on 20?–?21 January 2010. About three days earlier, on 17 January, a bright flare and coronal mass ejection (CME) were clearly observed by STEREO-B, which suggests that this was the progenitor of the MC. However, the in-situ speed of the event, several earlier weaker events, heliospheric imaging, and a longitude mismatch with the STEREO-B spacecraft made this interpretation unlikely. We searched for other possible solar eruptions that could have caused the MC and found a faint filament eruption and the associated CME on 14?–?15 January as the likely solar source event. We were able to confirm this source by using coronal imaging from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/EUVI and COR and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronograph (LASCO) telescopes and heliospheric imaging from the Solar Mass Ejection Imager (SMEI) and the STEREO/Heliospheric Imager instruments. We use several empirical models to understand the three-dimensional geometry and propagation of the CME, analyze the in-situ characteristics of the associated ICME, and investigate the characteristics of the MC by comparing four independent flux-rope model fits with the launch observations and magnetic-field orientations. The geometry and orientations of the CME from the heliospheric-density reconstructions and the in-situ modeling are remarkably consistent. Lastly, this event demonstrates that a careful analysis of all aspects of the development and evolution of a CME is necessary to correctly identify the solar counterpart of an ICME/MC.  相似文献   

14.
Wei Liu  Leon Ofman 《Solar physics》2014,289(9):3233-3277
Global extreme-ultraviolet (EUV) waves are spectacular traveling disturbances in the solar corona associated with energetic eruptions such as coronal mass ejections (CMEs) and flares. Over the past 15 years, observations from three generations of space-borne EUV telescopes have shaped our understanding of this phenomenon and at the same time led to controversy about its physical nature. Since its launch in 2010, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has observed more than 210 global EUV waves in exquisite detail, thanks to its high spatio–temporal resolution and full-disk, wide-temperature coverage. A combination of statistical analysis of this large sample, more than 30 detailed case studies, and data-driven MHD modeling, has been leading their physical interpretations to a convergence, favoring a bimodal composition of an outer, fast-mode magnetosonic wave component and an inner, non-wave CME component. Adding to this multifaceted picture, AIA has also discovered new EUV wave and wave-like phenomena associated with various eruptions, including quasi-periodic fast propagating (QFP) wave trains, magnetic Kelvin–Helmholtz instabilities (KHI) in the corona and associated nonlinear waves, and a variety of mini-EUV waves. Seismological applications using such waves are now being actively pursued, especially for the global corona. We review such advances in EUV wave research focusing on recent SDO/AIA observations, their seismological applications, related data-analysis techniques, and numerical and analytical models.  相似文献   

15.
On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l’Enregistrement Magnetique de l’Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.  相似文献   

16.
We present a review of the different aspects associated with the interaction of successive coronal mass ejections (CMEs) in the corona and inner heliosphere, focusing on the initiation of series of CMEs, their interaction in the heliosphere, the particle acceleration associated with successive CMEs, and the effect of compound events on Earth’s magnetosphere. The two main mechanisms resulting in the eruption of series of CMEs are sympathetic eruptions, when one eruption triggers another, and homologous eruptions, when a series of similar eruptions originates from one active region. CME?–?CME interaction may also be associated with two unrelated eruptions. The interaction of successive CMEs has been observed remotely in coronagraphs (with the Large Angle and Spectrometric Coronagraph Experiment – LASCO – since the early 2000s) and heliospheric imagers (since the late 2000s), and inferred from in situ measurements, starting with early measurements in the 1970s. The interaction of two or more CMEs is associated with complex phenomena, including magnetic reconnection, momentum exchange, the propagation of a fast magnetosonic shock through a magnetic ejecta, and changes in the CME expansion. The presence of a preceding CME a few hours before a fast eruption has been found to be connected with higher fluxes of solar energetic particles (SEPs), while CME?–?CME interaction occurring in the corona is often associated with unusual radio bursts, indicating electron acceleration. Higher suprathermal population, enhanced turbulence and wave activity, stronger shocks, and shock?–?shock or shock?–?CME interaction have been proposed as potential physical mechanisms to explain the observed associated SEP events. When measured in situ, CME?–?CME interaction may be associated with relatively well organized multiple-magnetic cloud events, instances of shocks propagating through a previous magnetic ejecta or more complex ejecta, when the characteristics of the individual eruptions cannot be easily distinguished. CME?–?CME interaction is associated with some of the most intense recorded geomagnetic storms. The compression of a CME by another and the propagation of a shock inside a magnetic ejecta can lead to extreme values of the southward magnetic field component, sometimes associated with high values of the dynamic pressure. This can result in intense geomagnetic storms, but can also trigger substorms and large earthward motions of the magnetopause, potentially associated with changes in the outer radiation belts. Future in situ measurements in the inner heliosphere by Solar Probe+ and Solar Orbiter may shed light on the evolution of CMEs as they interact, by providing opportunities for conjunction and evolutionary studies.  相似文献   

17.
We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA’s twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters – namely occurrence frequency, central position angle (PA) and PA span – derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate outwards.  相似文献   

18.
The twin STEREO spacecraft have been observing the Sun since 2006. Even though STEREO has only been active during solar minimum conditions so far, an important number of coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) have been observed. Many of the ICMEs can be linked back to the corresponding CMEs on the Sun through the combination of remote-sensing and in situ observations. This paper aims to answer the question whether a CME observed by a coronagraph will be detected in situ by a spacecraft in a specific location in the heliosphere. We use a flux-rope-like model fit to the STEREO SECCHI/COR2 data to obtain the direction of CME propagation and its geometrical configuration in three dimensions. Based on model parameters, we then calculate their angular widths and determine whether they should have been detected by STEREO-A, STEREO-B, Wind or ACE. We compare the results with corresponding in situ observations of ICMEs. We find that predictions of ICME detections on the base of COR2 data generally match well the actual in situ observations.  相似文献   

19.
The Solar Electron Proton Telescope on board the twin STEREO spacecraft measures electrons and ions in the energy range from 30 to above 400 keV with an energy resolution better than 10%. On 22 February 2010 during a short interval of 100 minutes, a sequence of impulsive energetic electron events in the range below 120 keV was observed with the STEREO-A/SEPT instrument. Each of the four events was associated with a type III radio burst and a narrow EUV jet. All the events show nearly symmetric “spike”-like time profiles with very short durations ≃ 5 min. The estimated electron injection time for each individual event shows a small time delay between the electron spike and the corresponding type III radio emission and a close coincidence with an EUV jet. These observations reveal the existence of spike-like electron events showing nearly “scatter-free” propagation from the Sun to STEREO-A. From the time coincidence we infer that the mildly relativistic electrons are accelerated at the same time and at the same location as the accompanying type III emitting electrons and coronal EUV jets. The characteristics of the spikes reflect the injection and acceleration profiles in the corona rather than interplanetary propagation effects.  相似文献   

20.
We study the partial eruption of a solar filament observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft on 9 May 2012. This filament was located in Active Region NOAA 11475 and consisted of two distinct branches, separated in height above the active region’s primary polarity-inversion line. For two days prior to the filament eruption, several threads of filament material were observed to connect the lower branch to the upper branch with evidence of a transfer of mass along them. The eruption commenced as a slow rise of the upper branch that began at 9 May 2012 23:40 UT, with the main eruption occurring half an hour later, producing a coronal mass ejection (CME). During the eruption, the upper branch was observed to rotate approximately 120 degrees in a counter-clockwise direction. We suggest that the mass transfer events also comprised a transfer of magnetic flux that led the upper branch of the filament to lose equilibrium as a result of a helical kink instability or torus instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号