首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on a novel design of coupled model simulations where sea surface temperature (SST) variability in the equatorial tropical Pacific was constrained to follow the observed El Niño—Southern Oscillation (ENSO) variability, while rest of the global oceans were free to evolve, the ENSO response in SSTs over the other ocean basins was analyzed. Conceptually the experimental setup was similar to discerning the contribution of ENSO variability to interannual variations in atmospheric anomalies. A unique feature of the analysis was that it was not constrained by a priori assumptions on the nature of the teleconnected response in SSTs. The analysis demonstrated that the time lag between ENSO SST and SSTs in other ocean basins was about 6 months. A signal-to-noise analysis indicated that between 25 and 50 % of monthly mean SST variance over certain ocean basins can be attributed to SST variability over the equatorial tropical Pacific. The experimental setup provides a basis for (a) attribution of SST variability in global oceans to ENSO variability, (b) a method for separating the ENSO influence in SST variations, and (c) understanding the contribution from other external factors responsible for variations in SSTs, for example, changes in atmospheric composition, volcanic aerosols, etc.  相似文献   

2.
Summary The objective of this study is to describe spatial and temporal patterns of sea-surface temperature (SST) variability in the Atlantic and Indian Oceans. The analysis domain extends from 40°S to 25°N and 50°W to 80°E, hence the tropical and most of the South Atlantic and central and western Indian Oceans. The investigation, covering the years 1948 to 1979, utilizes the COADS marine data set. Empirical orthogonal functions and spectral analysis are used to analyze SST fields.A major finding of this investigation is that SSTs vary coherently throughout most of the analysis domain. The greatest coherence is evident from 10°N to 30°S in the Atlantic and from 20°N to 35°S in the western Indian Ocean. Spectral analysis of regional time series shows that throughout this region the time scale of 5–6 years is the dominant one in the fluctuations; this is also the case for the Southern Oscillation and for equatorial rainfall. SST variations are roughly in-phase within each ocean and the two oceans are roughly in-phase with each other, i.e., the lags which exist are much smaller than the dominant time scale of the fluctuations. The SST anomalies appear to propagate eastward from NE Brazil; the eastern Atlantic lags the western by two to six months and the Indian Ocean lags the western Atlantic by four to eight months.With 15 Figures  相似文献   

3.
Utilizing the NCEP/NCAR reanalysis monthly datasets,and based on the filter and standard deviation calculation,the interannual variability of sea surface temperature (SST) and 1000 hPa wind field for the tropical Pacific,Indian and Atlantic Oceans is investigated for the past 20 years (1979-1998).The characters of space-time evolution in SST anomalies (SSTA) for each ocean and corresponding wind anomaly field are acquired by using rotated principal component (RPC) and linear regression analysis methods.Using the method of correlation analysis.the characters of three tropical oceans correlated with ENSO are investigated.The contemporary correlation between the SSTA in the Indian Ocean and in the equatorial eastern Pacific is positive,and there is a weak negative correlation between the SSTA in the equatorial east Atlantic Ocean and in the equatorial eastern Pacific.The lead-lag correlation analysis indicates that the SSTA in the equatorial Indian Ocean lags the dominant Pacific ENSO mode by 3 months,and the SSTA in the equatorial Atlantic Ocean leads ENSO mode by 6 months.The ENSO-correlated components in tropical Indian Ocean and tropical Atlantic Ocean display much the same amount of total variance in each ocean,i.e..14% in the Indian Ocean and 12% in the Atlantic Ocean and the maximums are all above 40%.  相似文献   

4.
Tropical zonally symmetric atmospheric warming occurs during ENSO’s warm phase, and lags the equa- torial east Pacific sea surface temperatures (SSTs) by 3–4 months. The role of the Indian and Atlantic oceans on the atmospheric delayed response has been pointed out by earlier studies. For 1951–2004, a regression analysis based on the observed SST data shows the western Pacific has a similarly important role as the Indian and Atlantic. Nevertheless, there is time mismatch of around 1–2 months between the zon...  相似文献   

5.
Several 19-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the monthly mean sea surface temperature (SST) observed in 1970–1988 were examined to study extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST monthly variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis (CCA), which select from two time-dependent fields optimally correlated pairs of patterns, was applied to monthly anomalies of SST in the North Alantic and Pacific Oceans and monthly anomalies of sea level pressure and 500 hPa geopotential height in the Northern Hemisphere. In the GAGO run the best correlated atmospheric pattern is global and is characterized by north-south dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospehric response is more local than in the GAGO run with main centers in the North Atlantic and North Pacific, respectively. The extratropical response in the GAGO run is not equal to the sum of the responses in the MOGA and TOGA runs. The artificial meridional SST gradients at 25°–30°N probably influence the results of the MOGA and TOGA runs. The atmopsheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 hPa. winter climate. The normal modes with smallest eigenvalues are similar to the model leading variability modes and canonical patterns of 500 hPa geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans.  相似文献   

6.
An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, Q (mm), and temperature, T (K), fields for the three tropical oceans (i.e., the Pacific, Atlantic and Indian Oceans) based on eleven GEOS-3 [Goddard Earth Observing System (EOS) Version-3] global re-analysis monthly products. A Q ? T distribution analysis is also performed for the tropical and extra-tropical regions based on in-situ sounding data and numerical simulations [GEOS-3 and the Goddard Cumulus Ensemble (GCE) model]. A similar positively correlated Q ? T distribution is found over the entire oceanic and tropical regions; however, Q increases faster with T for the former region. It is suspected that the tropical oceans may possess a moister boundary layer than the Tropics. The oceanic regime falls within the lower bound of the tropical regime embedded in a global, curvilinear Q ? T relationship. A positive correlation is also found between T and sea surface temperature (SST); however, for one degree of increase in T, SST is found to increase 1.1 degrees for a warmer ocean, which is slightly less than an increase of 1.25 degrees for a colder ocean. This seemingly indicates that more (less) heat is needed for an open ocean to maintain an air mass above it with a same degree of temperature rise during a colder (warmer) season [or in a colder (warmer) region]. Q and SST are also found to be positively correlated. Relative humidity (RH) exhibits similar behaviors for oceanic and tropical regions. RH increases with increasing SST and T over oceans, while it increases with increasing T in the Tropics. RH, however, decreases with increasing temperature in the extratropics. It is suspected that the tropical and oceanic regions may possess a moister local boundary layer than the extratropics so that a faster moisture increase than a saturated moisture increase is favored for the former regions. T,Q, saturated water vapor, RH, and SST are also examined with regard to the warm and cold “seasons” over individual oceans. The Indian Ocean warm season dominates in each of the five quantities, while the Atlantic Ocean cold season has the lowest values in most categories. The higher values for the Indian Ocean may be due to its relatively high percentage of tropical coverage compared to the other two oceans. However, Q is found to increase faster for colder months from individual oceans, which differs from the general finding in the global Q?T relationship that Q increases slower for a colder climate. The modified relationship may be attributed to a possible seasonal (warm and cold) variability in boundary layer depth over oceans, or to the small sample size used in each individual oceanic group.  相似文献   

7.
We introduce bilayer networks in this paper to study the coupled air–sea systems. Results show that the framework of bilayer networks is powerful for studying the statistical topology structure and dynamics in the fields of ocean and atmosphere. Based on bilayer networks, the inner and cross interactions of the sea surface temperature (SST) field and the height field are displayed, and the main three-dimensional air–sea interaction pattern is identified. The formation of the main pattern can be explained by the “gearing between the Indian and Pacific Ocean (GIP)” model; therefore, the pattern existence can be confirmed reliably. Furthermore, lead–lag analysis reveals the trigger processes of the “GIP”. That is, the anomalies of the tropical mid-eastern Pacific Ocean SST (TMEPO-SST) appear first; then, through the Walker circulation, the 850-hPa geopotential height over the Pacific Islands responds to the anomalies of the TMEPO-SST 2 months later; finally, the tropical Indian Ocean SST (TIO-SST) responds to the anomalies of the height 1 month later through the Asian monsoon circulation. Therefore, the impacts of the TMEPO-SST to the TIO-SST show 3 months later through the air–sea interactions between the components of the main three-dimensional air–sea interaction mode. The new framework uncovers already-known as well as other novel features of the air–sea systems and general circulation. The application of complex network theory and methodology to understand the complex interactions between the oceans and the atmosphere is promising.  相似文献   

8.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

9.
To extend the linear stochastically forced paradigm of tropical sea surface temperature (SST) variability to the subsurface ocean, a linear inverse model (LIM) is constructed from the simultaneous and 3-month lag covariances of observed 3-month running mean anomalies of SST, thermocline depth, and zonal wind stress. This LIM is then used to identify the empirically-determined linear dynamics with physical processes to gauge their relative importance to ENSO evolution. Optimal growth of SST anomalies over several months is triggered by both an initial SST anomaly and a central equatorial Pacific thermocline anomaly that propagates slowly eastward while leading the amplifying SST anomaly. The initial SST and thermocline anomalies each produce roughly half the SST amplification. If interactions between the sea surface and the thermocline are removed in the linear dynamical operator, the SST anomaly undergoes less optimal growth but is also more persistent, and its location shifts from the eastern to central Pacific. Optimal growth is also found to be essentially the result of two stable eigenmodes with similar structure but differing 2- and 4-year periods evolving from initial destructive to constructive interference. Variations among ENSO events could then be a consequence not of changing stability characteristics but of random excitation of these two eigenmodes, which represent different balances between surface and subsurface coupled dynamics. As found in previous studies, the impact of the additional variables on LIM SST forecasts is relatively small for short time scales. Over time intervals greater than about 9?months, however, the additional variables both significantly enhance forecast skill and predict lag covariances and associated power spectra whose closer agreement with observations enhances the validation of the linear model. Moreover, a secondary type of optimal growth exists that is not present in a LIM constructed from SST alone, in which initial SST anomalies in the southwest tropical Pacific and Indian ocean play a larger role than on shorter time scales, apparently driving sustained off-equatorial wind stress anomalies in the eastern Pacific that result in a more persistent equatorial thermocline anomaly and a more protracted (and predictable) ENSO event.  相似文献   

10.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

11.
Summary The evolving modes of the sea-surface temperature (SST) in the Tropical Atlantic on the short interannual (IA) timescale were obtained by performing the extended empirical orthogonal function (EEOF) analyses on this variable separately for the 106-year (1871–1976) and 20-year (1881–1900; 1901–1920; 1921–1940; 1941–1960) periods. The equatorial and inter-hemispheric patterns manifest in the first EEOF mode of each analysis as part of the short IA evolution of the SST anomalies in the Tropical Atlantic. Another outstanding feature of the first EEOF mode of each analysis concerns the propagations of the SST anomalies in the meridional direction within the 20°N–20°S band and in the zonal direction in the sector 40°W–20°W. For all analyses, the SST anomalies propagate northward from the equator to 15°N and southward from 20°N to 15°N, with the same sign anomalies merging approximately at 15°N. On the other hand, the SST anomalies propagate westward in the sector 40°W–20°W with a propagation rate close to that of the phase speed of the fastest baroclinic Rossby wave in the ocean. So, the observed propagations of the SST anomalies in the 20°N–20°S band might result from the combined effect of the surface oceanic currents in this band and the baroclinic Rossby waves in the ocean.  相似文献   

12.
Global features of the Pacific-Japan Oscillation   总被引:2,自引:0,他引:2  
Summary Global features of tropical convection, sea surface temperature (SST) and atmospheric circulation associated with the Pacific-Japan Oscillation (PJO) are examined by using monthly mean global data for 6 years (1979–1984). It is shown that the PJO is not a local phenomena limited to the western-Pacific but related to global-scale atmosphere-ocean variations.The PJO highly correlates with interannual variations of SST in the tropical Pacific. During summers in which positive SST anomaly occurs in the tropical western Pacific, convective activity in the western Pacific especially near Philippines is strongly enhanced but that in the whole equatorial eastern Pacific is greatly suppressed due to negative SST anomaly in these areas.The Walker circulation is intensified in the equatorial Pacific and twin cyclonic cells at 200 mb are generated in the subtropical Pacific of both hemispheres. Strong anticyclonic circulations take place in the northern middle latitudes extending from East China to Northwest Pacific. Anomalous circulations are also generated in the other extratropical regions in the both Northern and Southern Hemispheres.With 7 Figures  相似文献   

13.
殷永红  倪允琪 《气象学报》2001,59(4):459-471
采用 NCEP/NCAR的 1 979~ 1 998年逐月平均的海表温度及 1 0 0 0 h Pa风场资料 ,进行滤波和均方差计算 ,得到了热带太平洋、印度洋、大西洋海表温度 (SST)和风场的年际变化特征。用旋转主分量 (RPC)方法和投影法对热带三大洋海表温度距平 (SSTA)进行分析 ,得到了各大洋 SSTA演变的主要时空特征和相应的距平风场特征 ;并用相关分析研究热带三大洋与ENSO相关的特征 ,得到三大洋间的同期相关关系为 :印度洋 SSTA与赤道东太平洋 SSTA成正相关 ,而赤道东大西洋 SSTA与赤道东太平洋 SSTA成弱的负相关 ;赤道印度洋在落后于赤道东太平洋 3个月左右时正相关达到最大 ,赤道大西洋在超前于赤道东太平洋 6个月左右时负相关达到最大 ;热带印度洋和大西洋与 ENSO相关的分量对各自大洋海表温度年际变化的方差贡献数值相近 ,最大在 40 %以上 ,平均解释方差分别为 1 4%和 1 2 %。  相似文献   

14.
The purpose of this paper is to evaluate the tropical Pacific wind stress anomalies produccd on monthly to interannual time scales by the complex general circulation model (GCM) of the center for Ocean Land Atmosphere Interactions (C.O.L.A.) at low (R15) resolutions. The model is integraed using observed sea surface temperature (SST) for ten years 1979 through 1988. The model simulates generally realistic wind stress anomaly (WSA). The model-generated data set of WSA was used to force the Zebiax Cane ocean model (ZCOM) for ten years. The modeled (SST) anomalies were compared to the observed SST anomalies. The ZCOM simulation shows realistic 1982/83 and 1986/87 warm episodes along the equator, but could produce less realistic 1984/85 and 1988/89 cold episodes along the equator due to lack of wind stress forcing in the mean model. Time series of the NINO3 index (measuring the SST anomaly in the mid-eastern Pacific) is realistic for the ZCOM simulation.  相似文献   

15.
The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated w  相似文献   

16.
热带海洋海气相互作用的区域差异   总被引:7,自引:3,他引:7  
用NCEP/NCAR40年再分析1000hPa月平均风场资料及COADS月平均海表温度资料,对热带西、中、东太平洋、热带大西洋和印度洋五个区域的海气异常作了奇异值分解(SVD)。比较区域间SVD的主要参数和分析第一奇异向量及其时间系数表明,热带海气相互作用可区分为三类;热带东、中太平洋属‘单元型’,ENSO是唯一重要的过程,热带西太平洋、印度洋属‘二元型’,除了ENSO过程,还应存在唯一重要的过程;热带西太平洋,印度洋属‘二元型’,除了ENSO过程还应存在另一重要过程,热带大西洋属‘多元型’,其构成复杂,ENSO循环则不明显。  相似文献   

17.
Annual and seasonal gridded ocean surface temperature anomalies show an increase in warm extremes and a decrease in cold extremes since the late 19th century attributable entirely to the overall warming trend. Over land, however, a reduction in the total incidence of extremes may reflect improved instrumental exposures. Our estimates of extremes are made by deriving percentiles from fits of anomalies on 5° latitude ×5° longitude resolution to modified 2-parameter gamma distributions. A non-parametric method is used to check the validity of the results. Fields of percentiles created using this technique can be used to map the distribution of unusual temperature anomalies across the globe on any time scale from a month to about a decade, from 1870 onwards. We apply a similar technique to assess changes in the incidence of extreme daily Central England temperature anomalies. The incidence of these extremes, relative to individual monthly average temperatures, has declined.  相似文献   

18.
An ocean analysis, assimilating both surface and subsurface hydrographic temperature data into a global ocean model, has been produced for the period 1958–2000, and used to study the time and space variations of North Atlantic upper ocean heat content (HC). Observational evidence is presented for interannual-to-decadal variability of upper ocean thermal fluctuations in the North Atlantic related to the North Atlantic Oscillation (NAO) variability over the last 40 years. The assimilation scheme used in the ocean analysis is a univariate, variational optimum interpolation of temperature. The first guess is produced by an eddy permitting global ocean general circulation forced by atmospheric reanalysis from the National Center for Environmental Prediction (NCEP). The validation of the ocean analysis has been done through the comparison with objectively analyzed observations and independent data sets. The method is able to compensate for the model systematic error to reproduce a realistic vertical thermal structure of the region and to improve consistently the model estimation of the time variability of the upper ocean temperature. Empirical orthogonal function (EOF) analysis shows that an important mode of variability of the wintertime upper ocean climate over the North Atlantic during the period of study is characterized by a tripole pattern both for SST and upper ocean HC. A similar mode is found for summer HC anomalies but not for summer SST. Over the whole period, HC variations in the subtropics show a general warming trend while the tropical and north eastern part of the basin have an opposite cooling tendency. Superimposed on this linear trend, the HC variability explained by the first EOF both in winter and summer conditions reveals quasi-decadal oscillations correlated with changes in the NAO index. On the other hand, there is no evidence of correlation in time between the NAO index and the upper ocean HC averaged over the whole North Atlantic which exhibits a substantial and monotonic warming trend during the last two decades of the analysis period. The maximum correlation is found between the leading principal component of winter HC anomalies and NAO index at 1 year lag with NAO leading. For SST anomalies significant correlation is found only for winter conditions. In contrast, for HC anomalies high correlations are found also in the summer suggesting that the summer HC keeps a memory of winter conditions.  相似文献   

19.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

20.
A. Wu  W. W. Hsieh 《Climate Dynamics》2003,21(7-8):719-730
Nonlinear interdecadal changes in the El Niño-Southern Oscillation (ENSO) phenomenon are investigated using several tools: a nonlinear canonical correlation analysis (NLCCA) method based on neural networks, a hybrid coupled model, and the delayed oscillator theory. The leading NLCCA mode between the tropical Pacific wind stress (WS) and sea surface temperature (SST) reveals notable interdecadal changes of ENSO behaviour before and after the mid 1970s climate regime shift, with greater nonlinearity found during 1981–99 than during 1961–75. Spatial asymmetry (for both SST and WS anomalies) between warm El Niño and cool La Niña events was significantly enhanced in the later period. During 1981–99, the location of the equatorial easterly anomalies was unchanged from the earlier period, but in the opposite ENSO phase, the westerly anomalies were shifted eastward by up to 25°. According to the delayed oscillator theory, such an eastward shift would lengthen the duration of the warm events by up to 45%, but leave the duration of the cool events unchanged. Supporting evidence was found from a hybrid coupled model built with the Lamont dynamical ocean model coupled to a statistical atmospheric model consisting of either the leading NLCCA or CCA mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号