首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observing and Modeling Earth’s Energy Flows   总被引:1,自引:0,他引:1  
This article reviews, from the authors’ perspective, progress in observing and modeling energy flows in Earth’s climate system. Emphasis is placed on the state of understanding of Earth’s energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m?2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth’s energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth’s energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth’s energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.  相似文献   

2.
It is becoming apparent that the correlation of clouds at different altitudes with cosmic rays and solar activity is a matter of complexity. Specifically, evidence has been presented favouring particular regions of the Earth having positive or negative correlations of cloud cover with respect to cosmic rays and to solar irradiation.In this work we examine the evidence critically from several standpoints and conclude that the evidence for a negative correlation of low and a positive correlation for middle cloud cover with solar irradiance (as measured by UV) over a significant fraction of the Earth (20–30%) is good. No other claimed correlations are supported.  相似文献   

3.
Continuous measurements of solar spectral radiation using the multifilter rotating shadow band radiometer (MFRSR-7) are performed at the Actinometric Station of the National Observatory of Athens (ASNOA). The present study utilizes 4 days of continuous observations, from local sunrise to sunset, in order to investigate the daily variation of the radiation components (diffuse and global) as well as their ratio (diffuse-to-global irradiance ratio, DGR) under different atmospheric conditions. DGR has received a great scientific interest, as well as the respective diffuse-to-direct-beam ratio especially for investigating solar irradiance modifications under different atmospheric conditions, aerosol load and optical properties. Apart from this, the present study shows that the DGR can also constitute a powerful tool for cloud screening, i.e. for removing perturbed data due to cloud contamination from automated sun scanning radiometers. The relationship between DGR at a specific wavelength with the respective ratio for the whole MFRSR band (300–1100 nm) is found to exhibit a curvature; this curvature is strongly modified when perturbed irradiance data (possibly caused by clouds) occur. Even though the perturbed data can also be easily identified from the diurnal irradiance variation, the present study is the first to show the effect of perturbed solar spectral data on the DGR.  相似文献   

4.
Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km × 10 km and 100 km × 100 km. It appears that in the case of small sectors (base size 20 km × 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km × 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km × 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km × 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%.  相似文献   

5.
Our observations of the distribution of early spring phytoplankton blooms (27 March to 5 April 1984) in the Gulf of Maine support previous contentions that bloom propagation begins when the depth averaged in situ solar irradiance within the upper mixed layer is about 40 ly d−1. We found that prior to vernal warming and thermal stratification, the formation of an upper mixed layer in these waters appears to be determined in three ways: (1) by density stratification resulting from freshwater runoff immediately adjacent to the coast, (2) by intrusions of dense slope water and its subsequent doming to form a pycnocline in Jordan Basin, and (3) by local bathymetry.  相似文献   

6.
Factors affecting UV radiation at the earth’s surface include the solar zenith angle, earth–sun distance, clouds, aerosols, altitude, ozone and the ground’s albedo. The variation of some factors, such as solar zenith angle and earth–sun distance, is well established. Total column ozone and UV radiation are inversely related, but the presence of clouds may affect the resulting UV in such a way that a depletion in the total column ozone may not always lead to an increase in the radiation at the earth’s surface. The aim of this paper is to determine the contribution to the variation of the biologically effective irradiance by geometric factors, clouds and ozone, jointly and separately, in Ushuaia (54°49′S, 68°19′W, sea level), and the seasonal variation of this relationship, given the magnitude and seasonal distribution of the ozone depletion and the frequent presence of high cloud cover in this site. For this purpose, multivariate and simple regression analyses of daily and monthly integrated irradiances weighted by the DNA damage action spectrum as a function of total column ozone and the integrated irradiances in the band 337–342 nm (as a proxy for cloud cover and geometric factors) have been performed. For the analysed period (September 1989–December 1996) more than 97% of the variation of the DNA damage weighted daily integrated irradiances is described by changes in ozone, clouds and geometric factors. Simple regression analysis for daily integrated irradiances, grouped by month, shows that most of this variation is explained by clouds and geometric factors, except in spring, when strong ozone depletion occurs intermittently over this area. When monthly trends are removed, similar results are observed, except for late winter.  相似文献   

7.
The effects of cloud shadowing, channelling, cloud side illumination and droplet concentration are investigated with regard to the reflection of shortwave solar radiation. Using simple geometric clouds, coupled with a Monte Carlo model the transmission properties of idealized cloud layers are found. The clouds are illuminated with direct solar radiation from above. The main conclusion reached is that the distribution of the cloud has a very large influence on the reflectivity of a cloud layer. In particular, if the cloud contains vertical gaps through the cloud layer in which the liquid water content is zero, then, smaller more numerous gaps are more influential on the radiation than fewer, larger gaps with equal cloud fraction. At very low solar zenith angles channelling of the radiation reduces the reflection expected on the basis of the percentage cloud cover. At high solar zenith angles the illumination of the cloud edges significantly increases the reflection despite the shadowing of one cloud by another when the width of the gaps is small. The impact of droplet concentration upon the reflection of cloud layers is also investigated. It is found that at low solar zenith angles where channelling is important, the lower concentrations increase the transmission. Conversely, when cloud edge illumination is dominant the cloud distribution is found to be more important for the higher concentrations.  相似文献   

8.
On 15 January 2010, Thumba (8.5°N, 76.9°E) witnessed one of the longest known noontime annular solar eclipses (ASEs) spanning a period of about 7 min, centered at 1314 hours local time. In this research article, we present a case study on the behaviour of the atmospheric boundary layer characteristics and its vertical structure in response to this rare celestial event by making use of a suite of different in-situ instruments. During the peak period of the ASE, the incoming solar irradiance was dimmed by about 87% of its normal values, resulting in a significant reduction in the magnitudes of turbulent kinetic energy and surface-layer turbulent fluxes of heat and momentum. The intensity and vertical thickness of the sea/land breeze circulation cell over the study domain also weakened. However, the mixed layer heights determined from balloon-borne GPS Radiosonde did not show any appreciable changes. Analysis of vertical profiles of thermodynamic parameters in association with the wind direction during ASE indicated the formation of a double mixed layer between 700 and 1500 m and is attributed to horizontal advection of a different airmass at those altitudes.  相似文献   

9.
Biases in shortwave cloud radiative forcing (SWCF), which cause overestimates in tropical regions and underestimates in subtropical marine stratocumulus regions, are common in many climate models. Here, two boundary layer processes are investigated in the atmospheric model GAMIL2, entrainment at the top of the boundary layer and longwave radiative cooling at the top of stratocumulus clouds, in order to reduce biases and reveal the mechanisms underlying these processes. Our results show that including the entrainment process in the model can reduce negative SWCF biases in most tropical regions but increases positive SWCF biases in subtropical marine stratocumulus regions. This occurs because entrainment reduces the low-level cloud fraction and its cloud liquid water content by suppressing the vertical turbulent diffusion in the boundary layer and decreasing the relative humidity when warm and dry free atmosphere is entrained in the boundary layer. Longwave radiative cooling at the top of stratocumulus clouds can enhance turbulent diffusion within the stratocumulus-topped boundary layer. When combined with the entrainment process, longwave radiative cooling reduces the positive SWCF biases in subtropical marine stratocumulus regions that are observed using the entrainment process alone. The incorporation of these two boundary layer processes improves the simulated SWCF in tropical and subtropical regions in GAMIL2.  相似文献   

10.
We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot) and solar UV (SUV). The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models) that may better capture radiative and dynamical couplings of the troposphere and stratosphere.  相似文献   

11.
Changes in the Earth's radiation budget are driven by changes in the balance between the thermal emission from the top of the atmosphere and the net sunlight absorbed. The shortwave radiation entering the climate system depends on the Sun's irradiance and the Earth's reflectance. Often, studies replace the net sunlight by proxy measures of solar irradiance, which is an oversimplification used in efforts to probe the Sun's role in past climate change. With new helioseismic data and new measures of the Earth's reflectance, we can usefully separate and constrain the relative roles of the net sunlight's two components, while probing the degree of their linkage. First, this is possible because helioseismic data provide the most precise measure ever of the solar cycle, which ultimately yields more profound physical limits on past irradiance variations. Since irradiance variations are apparently minimal, changes in the Earth's climate that seem to be associated with changes in the level of solar activity—the Maunder Minimum and the Little Ice age for example—would then seem to be due to terrestrial responses to more subtle changes in the Sun's spectrum of radiative output. This leads naturally to a linkage with terrestrial reflectance, the second component of the net sunlight, as the carrier of the terrestrial amplification of the Sun's varying output. Much progress has also been made in determining this difficult to measure, and not-so-well-known quantity. We review our understanding of these two closely linked, fundamental drivers of climate.  相似文献   

12.
Erythemal ultraviolet (UVER; 280–400 nm) and total shortwave (SW; 305–2800 nm) solar irradiances were recorded from 2000 to 2009 in Valladolid, Spain. UVER and SW values under cloudless conditions are simulated by radiative transfer (TUV 4.6) and empirical models. These model estimations are tested with experimental measurements showing a great agreement (root mean square error around 7%). The aerosol effect on UVER irradiance is determined through a model study. UVER radiation and total ozone column (TOC) temporal evolutions show a negative relationship. TOC accounts for 80% of UVER variance and its radiation amplification factor is 1.1 at zenith of 65°. Cloud effects on solar radiation are shown and quantified by the cloud modification factor. Moreover the enhancement effect cases are analysed. SW radiation proves more sensitive to clouds than UVER. Clouds are seen to attenuate and enhance solar radiation by up to 93% and 22% in the UVER range, respectively.  相似文献   

13.
现代的日地物理学是把太阳-行星际空间-地球作为一个统一的体系,研究体系中各层次的动力学过程及各层次间的相互耦合作用。太阳活动是引起该系统变化和扰动的主要源,太阳活动的研究在日地物理研究中受到特别的重视。太阳活动现象依其变化速率可被分成缓变型与爆发型两类。本文叙述日地系统学中缓变型大阳活动的研究进展,并且讨论它在90年代所面临的问题。  相似文献   

14.
Total solar irradiance has been monitored from space for nearly two decades. These space-borne observations have established conclusively that total solar irradiance changes over a wide range of periodicities—from minutes to the 11-year solar cycle. Since the total energy flux of the Sun is the principal driver for all Earths atmospheric phenomena, the accurate knowledge of the solar radiation received by the Earth and its variations is an extremely important issue. In this paper we review the long-term variations of total solar irradiance during solar cycles 21 and 22. We conclude that, within the current accuracy and precision of the measurements, the minimum level of total solar irradiance is about the same for both solar cycles 21 and 22.  相似文献   

15.
Transitional, entraining, cloudy, and coastal boundary layers   总被引:2,自引:0,他引:2  
Atmospheric boundary layers are marvelously varied and complex. Recent research has examined some of that variety. Boundary layers over land undergo drastic changes throughout the day as the sun rises and sets, and as clouds form and dissipate. Air is entrained at the top of the boundary layer at varying rates. As air moves over the coast, the boundary layer reacts to changes in surface forcing. All of these changes affect pollutant transport and weather formation. In this paper, research attempting to understand transitional, cloud-topped, and coastal boundary layers, and boundary-layer top entrainment, is reviewed.  相似文献   

16.
月表有效太阳辐照度实时模型   总被引:2,自引:0,他引:2       下载免费PDF全文
月表太阳辐射是深入研究月表温度分布的关键问题之一. 本文根据月表有效太阳辐照度与太阳常数、太阳辐射入射角以及日月距离之间的关系,建立月表有效太阳辐照度的实时模型. 该模型在1950~2050年的100年内的理论误差百分比小于0.28%, 相对前人提出的模型在精度上有了很大程度的提高,能较为真实地反映月表有效太阳辐照度随时间的变化规律. 计算结果表明2007年月表太阳辐照度的年变化范围在1321.5~1416.6 W·m-2之间,平均为1368.0 W·m-2. 通过对月表太阳辐射入射角计算结果的分析,证实了月球的两极可能存在极昼极夜.  相似文献   

17.
Despite substantial progress in atmospheric modeling, the agreement of the simulated atmospheric response to decadal scale solar variability with the solar signal in different atmospheric quantities obtained from the statistical analysis of the observations cannot be qualified as successful. An alternative way to validate the simulated solar signal is to compare the sensitivity of the model to the solar irradiance variability on shorter time scales. To study atmospheric response to the 28-day solar rotation cycle, we used the chemistry–climate model SOCOL that represents the main physical–chemical processes in the atmosphere from the ground up to the mesopause. An ensemble simulation has been carried out, which is comprised of nine 1-year long runs, driven by the spectral solar irradiance prescribed on a daily basis using UARS SUSIM measurements for the year 1992. The correlation of zonal mean hydroxyl, ozone and temperature averaged over the tropics with solar irradiance time series have been analyzed. The hydroxyl has robust correlations with solar irradiance in the upper stratosphere and mesosphere, because the hydroxyl concentration is defined mostly by the photolysis. The simulated sensitivity of the hydroxyl to the solar irradiance changes is in good agreement with previous estimations. The ozone and temperature correlations are more complicated because their behavior depends on non-linear dynamics and transport in the atmosphere. The model simulates marginally significant ozone response to the solar irradiance variability during the Sun rotation cycle, but the simulated temperature response is not robust. The physical nature of this is not clear yet. It seems likely that the temperature (and partly the ozone) daily fields possess their own internal variability, which is not stable and can differ from year to year reflecting different dynamical states of the system.  相似文献   

18.
Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar cycle time scales. Here, we compare solar irradiance in the 220–240?nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.  相似文献   

19.
The knowledge of solar extreme and far ultraviolet (EUV) irradiance variations is essential for the characterization of the Earth’s upper atmosphere. For a long time, this knowledge has been based on empirical models, which are themselves based on proxies of the solar activity. However, the accurate modeling and prediction of the Earth’s upper atmosphere necessitate to improve the precision on the irradiance and its variations below about 200 nm. Here, we present a review of recent works made by the authors that aim at quantifying the irradiance variability at these wavelengths, and that lead to new way of monitoring the solar EUV/FUV irradiance spectrum. In more details, it is shown that the quantification of the high level of redundancy in the solar spectrum variability allows to envisage measuring only a small portion of the spectrum without losing essential knowledge. Finally, we discuss what should and could be measured in order to retrieve the solar extreme and far ultraviolet spectrum.  相似文献   

20.
SOLAR2000 is a collaborative project for accurately characterizing solar irradiance variability across the spectrum. A new image- and full-disk proxy empirical solar irradiance model, SOLAR2000, is being developed that is valid in the spectral range of 1–1,000,000 nm for historical modeling and forecasting throughout the solar system. The overarching scientific goal behind SOLAR2000 is to understand how the Sun varies spectrally and through time from X-ray through infrared wavelengths. This will contribute to answering key scientific questions and will aid national programmatic goals related to solar irradiance specification. SOLAR2000 is designed to be a fundamental energy input into planetary atmosphere models, a comparative model with numerical/first principles solar models, and a tool to model or predict the solar radiation component of the space environment. It is compliant with the developing International Standards Organization (ISO) solar irradiance standard. SOLAR2000 captures the essence of historically measured solar irradiances and this expands our knowledge about the quiet and variable Sun including its historical envelope of variability. The implementation of the SOLAR2000 is described, including the development of a new EUV proxy, E10.7, which has the same units as the commonly used F10.7. SOLAR2000 also provides an operational forecasting and global specification capability for solar irradiances and information can be accessed at the website address of http://www.spacenvironment.net.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号