首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Tsunami Deposits   总被引:1,自引:0,他引:1  
—Geological investigations of coastal sediments indicate that prehistoric tsunamis can be identified. Their characterisation has altered our knowledge of the past frequency and magnitude of tsunamis for different areas of the world. Yet there have been relatively few geological studies of modern tsunamis with virtually no direct observations of the processes associated with tsunami sediment transport and deposition. This paper discusses these issues and draws on the results of recent research to summarise our current knowledge on the nature of tsunami deposits.  相似文献   

3.
4.
5.
6.
7.
8.
We calculated tsunami runup probability (in excess of 0.5 m) at coastal sites throughout the Caribbean region. We applied a Poissonian probability model because of the variety of uncorrelated tsunami sources in the region. Coastlines were discretized into 20 km by 20 km cells, and the mean tsunami runup rate was determined for each cell. The remarkable ~500-year empirical record compiled by O’Loughlin and Lander (2003) was used to calculate an empirical tsunami probability map, the first of three constructed for this study. However, it is unclear whether the 500-year record is complete, so we conducted a seismic moment-balance exercise using a finite-element model of the Caribbean-North American plate boundaries and the earthquake catalog, and found that moment could be balanced if the seismic coupling coefficient is c = 0.32. Modeled moment release was therefore used to generate synthetic earthquake sequences to calculate 50 tsunami runup scenarios for 500-year periods. We made a second probability map from numerically-calculated runup rates in each cell. Differences between the first two probability maps based on empirical and numerical-modeled rates suggest that each captured different aspects of tsunami generation; the empirical model may be deficient in primary plate-boundary events, whereas numerical model rates lack backarc fault and landslide sources. We thus prepared a third probability map using Bayesian likelihood functions derived from the empirical and numerical rate models and their attendant uncertainty to weight a range of rates at each 20 km by 20 km coastal cell. Our best-estimate map gives a range of 30-year runup probability from 0–30% regionally.  相似文献   

9.
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.  相似文献   

10.
11.
12.
香港天文台在2012年引进了一套采用平行运算技术的海啸数值模型COrnell Multigrid COupled Tsunami(COMCOT)model,并与香港天文台在2010年初开始运行的地震数据处理及分析系统结合,利用后者探测及分析所得的太平洋或南海地震参数,模拟海啸传播过程和计算海啸在海面上及抵岸时的情况。并用日本311地震所产生的海啸为主要案例,加上过去香港曾经录得的海啸记录,验证COMCOT模拟海啸的能力,讨论COMCOT在香港天文台海啸预警工作上的应用。  相似文献   

13.
14.
The Transoceanic 1755 Lisbon Tsunami in Martinique   总被引:1,自引:0,他引:1  
On 1 November 1755, a major earthquake of estimated M w=8.5/9.0 destroyed Lisbon (Portugal) and was felt in the whole of western Europe. It generated a huge transoceanic tsunami that ravaged the coasts of Morocco, Portugal and Spain. Local extreme run-up heights were reported in some places such as Cape St Vincent (Portugal). Great waves were reported in the Madeira Islands, the Azores and as far as the Antilles (Caribbean Islands). An accurate search for historical data allowed us to find new (unpublished) information concerning the tsunami arrival and its consequences in several islands of the Lesser Antilles Arc. In some places, especially Martinique and the Guadeloupe islands, 3?m wave heights, inundation of low lands, and destruction of buildings and boats were reported (in some specific locations probably more enclined to wave amplification). In this study, we present the results of tsunami modeling for the 1755 event on the French island of Martinique, located in the Lesser Antilles Arc. High resolution bathymetric grids were prepared, including topographic data for the first tens of meters from the coastline, in order to model inundations on several sites of Martinique Island. In order to reproduce as well as possible the wave coastal propagation and amplification, the final grid was prepared taking into account the main coastal features and harbour structures. Model results are checked against historical data in terms of wave arrival, polarity, amplitude and period and they correlate well for Martinique. This study is a contribution to the evaluation of the tele-tsunami impact in the Caribbean Islands due to a source located offshore of Iberia and shows that an 8.5 magnitude earthquake located in the northeastern Atlantic is able to generate a tsunami that could impact the Caribbean Islands. This fact must be taken into account in hazard and risk studies for this area.  相似文献   

15.
Runup of Tsunami Waves in U-Shaped Bays   总被引:2,自引:0,他引:2  
The problem of tsunami wave shoaling and runup in U-shaped bays (such as fjords) and underwater canyons is studied in the framework of 1D shallow water theory with the use of an assumption of the uniform current on the cross-section. The wave shoaling in bays, when the depth varies smoothly along the channel axis, is studied with the use of asymptotic approach. In this case a weak reflection provides significant shoaling effects. The existence of traveling (progressive) waves, propagating in bays, when the water depth changes significantly along the channel axis, is studied within rigorous solutions of the shallow water theory. It is shown that traveling waves do exist for certain bay bathymetry configurations and may propagate over large distances without reflection. The tsunami runup in such bays is significantly larger than for a plane beach.  相似文献   

16.
In response to the 2004 Indian Ocean tsunami, the United States began a careful review and strengthening of its programs aimed at reducing the consequences of tsunamis. Several reports and calls to action were drafted, including the Tsunami Warning and Education Act (Public Law 109–424) signed into law by the President in December 2006. NOAA’s National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology (WDC-GMG) maintain a national and international tsunami data archive that fulfills part of the P.L. 109-424. The NGDC/WDC-GMG long-term tsunami data archive has expanded from the original global historical event databases and damage photo collection, to include tsunami deposits, coastal water-level data, DART? buoy data, and high-resolution coastal DEMs. These data are used to validate models, provide guidance to warning centers, develop tsunami hazard assessments, and educate the public about the risks from tsunamis. In this paper we discuss current steps and future actions to be taken by NGDC/WDC-GMG to support tsunami hazard mitigation research, to ultimately help save lives and improve the resiliency of coastal communities.  相似文献   

17.
Tsunami Forecasting and Monitoring in New Zealand   总被引:1,自引:0,他引:1  
New Zealand is exposed to tsunami threats from several sources that vary significantly in their potential impact and travel time. One route for reducing the risk from these tsunami sources is to provide advance warning based on forecasting and monitoring of events in progress. In this paper the National Tsunami Warning System framework, including the responsibilities of key organisations and the procedures that they follow in the event of a tsunami threatening New Zealand, are summarised. A method for forecasting threat-levels based on tsunami models is presented, similar in many respects to that developed for Australia by Allen and Greenslade (Nat Hazards 46:35?C52, 2008), and a simple system for easy access to the threat-level forecasts using a clickable pdf file is presented. Once a tsunami enters or initiates within New Zealand waters, its progress and evolution can be monitored in real-time using a newly established network of online tsunami gauge sensors placed at strategic locations around the New Zealand coasts and offshore islands. Information from these gauges can be used to validate and revise forecasts, and assist in making the all-clear decision.  相似文献   

18.
Tsunami mitigation, preparedness and early warning initiatives have begun at the global scale only after the tragic event of Sumatra in 2004. Turkey, as a country with a history of devastating earthquakes, has been also affected by tsunamis in its past. In this paper we present the Tsunami Hazard in the Eastern Mediterranean and its connected seas (Aegean, Marmara and Black Sea) by providing detailed information on historically and instrumentally recorded significant tsunamigenic events surrounding Turkey, aiming to a better understanding of the Tsunami threat to the Turkish coasts. In addition to the review of the Tsunami hazard, we have studied a possible Tsunami source area between Rhodes and SW of Turkey using Tsunami numerical model NAMI DANCE-two nested domains. We have computed a maximum positive amplitude of 1.13 m and maximum negative amplitude of −0.5 m at the Tsunami source by this study. The distribution of maximum positive amplitudes of the water surface elevations in the selected Tsunami forecast area and time histories of water level fluctuations near selected locations (Marmaris, Dalaman, Fethiye and Kas towns) indicate that the maximum positive amplitude near the coast in the selected forecast area exceeds 3.5 m. The arrival time of maximum wave to Marmaris, Dalaman, is 10 min, while that of Fethiye and Kas towns is 15–20 min. The maximum positive amplitudes near the shallow region of around 10 m depth are 3 m (Marmaris), 1 m (Dalaman), 2 m (Fethiye) and 1 m (Kas). Maximum positive amplitudes of water elevations in the duration of 4 h simulation of the Santorini-Minoan Tsunami in around 1600 BC in the Aegean Sea are also calculated based on a simulation performed using 900 m grid resolution of Aegean sea bathymetry with a 300 m collapse of 10 km diameter of Thera (Santorini) caldera. We have also presented the results of the Tsunami modeling and simulation for Marmara Sea obtained from a previous study. Last part of this paper provides information on the establishment of a Tsunami Warning Center by KOERI, which is expected to act also as a regional center under the UNESCO Intergovernmental Oceanographic Commission – Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North-Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEAMTWS) initiative, emphasizing on the challenges together with the future work needed to be accomplished.  相似文献   

19.
20.
Trapping of long water waves that are induced by submarine earthquakes and that attack circular islands is studied by applying a theoretical model (Tinti andVannini, 1994) that is based on the linear shallow water approximation. The solution is computed as the superposition of the eigenmodes of the water basin. The tsunami trapping is seen in terms of the capability of the source to excite the trapped eigenmodes of the basin. The bottom depth dependence around the island is shown to be quite important in determining the trapping capability of the island: a depth profile that is downwardly concave as the distance from the island coasts increases is substantially more efficient in amplifying the incoming waves and in trapping their energy than a profile exhibiting an upward concavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号