首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past ~25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called ‘reference’ missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of ~0.3 mm/year). Regional trend uncertainty has been reduced by a factor of ~2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2–4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.  相似文献   

2.
Long-term and high-resolution (∼1.2 km) satellite-derived sea surface temperature (SST) fields of a monthly mean time series for the 1985–1999 period, and a daily climatology have been calculated for the North West Atlantic Ocean. The SST fields extend from 78°W to 41°W in longitude, and 30°N to 56°N in latitude, encompassing the region off Cape Hatteras, North Carolina, to the southern Labrador Sea. The monthly mean time series, consists of 180 cloud-masked monthly mean SST fields, derived from a full-resolution NOAA/NASA Pathfinder SST data set for the 1985–1999 period. The satellite-derived monthly mean SST fields, as compared with in situ monthly mean near-surface ocean temperatures from buoys located in the western North Atlantic, yield an overall RMS difference of 1.15 °C. The daily climatology, which consists of 365 fields, was derived by applying a least-squares harmonic regression technique on the monthly mean SST time series for the full study period. The monthly mean and daily climatological SST fields will be useful for studying inter-annual variability related to climate variability of SST over the study domain.  相似文献   

3.
武汉九峰地震台超导重力仪观测分析研究   总被引:9,自引:1,他引:8       下载免费PDF全文
连续重力观测和GPS的技术结合能够监测到物质迁移和地壳垂直形变之间的量化关系.和相对重力测量以及绝对重力测量技术相比,其避免了时间分辨率和观测精度低,无法精细描述观测周期内的物质迁移过程问题.本文利用武汉九峰地震台超导重力仪SGC053超过13000 h连续重力观测数据;同址观测的绝对重力仪观测结果;气压数据;周边GPS观测结果;GRACE卫星的时变重力场;全球水储量模型等资料,采用同址观测技术、调和分析法、相关分析方法在扣除九峰地震台潮汐、气压、极移和仪器漂移的基础上,利用重力残差时间序列和GPS垂直位移研究物质迁移和地壳垂直形变之间的量化关系.结果表明:在改正连续重力观测数据的潮汐、气压、极移的影响后,不仅准确观测到2009年的夏秋两季由于水负荷引起的约(6~8)×10-8m·s-2短期的重力变化.而且在扣除2.18×10-8(m·s-2)/a仪器漂移和水负荷的影响后,验证了本地区长短趋势垂直形变和重力变化之间具有一致的负相关性规律.同时长趋势表明该地区地壳处于下沉,重力处于增大过程,增加速率约为1.79×10-8(m·s-2)/a.武汉地区重力梯度关系约为-354×10-8(m·s-2)/m.  相似文献   

4.
本文利用CSR发布的GRACE RL06时变重力场模型,结合两种水文模式、卫星测高、降雨和蒸散等多源数据,从多个角度综合系统地分析维多利亚湖流域2003-01—2017-06的陆地水储量变化.比较了正向建模方法和单一尺度因子对泄漏误差的改正效果,经对比采用正向建模方法在此流域效果更好.基于多源数据得出以下三点与此前研究不同的结论:(1)GRACE RL06版本数据探测到流域内的水储量在2003-01—2017-06呈增加趋势,球谐位系数和Mascon产品得到的变化速率分别为14.9 mm·a-1和16.7 mm·a-1,观测误差小于RL05版本的结果,RL05版本低估了流域水储量的变化速率;(2)2013-01—2016-02期间GRACE和测高探测到湖泊水量增长,而水文模式探测到流域内水储量减少,推测这一现象由大坝蓄水造成;(3)受El Ni1o事件影响,2016-03—2017-06流域降雨减少,流域水储量减少,GRACE球谐位系数和Mascon探测到的变化速率分别为-100.3 mm·a-1和-129.7 mm·a...  相似文献   

5.
近四年全球海水质量变化及其时空特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用卫星重力、卫星测高和海洋温盐数据反演计算全球海水质量变化,并分析其时空变化特征.卫星重力数据利用2003年1月~2006年12月的GRACE月时变重力场球谐系数,同时考虑替换一阶项和C20项,并进行了相关误差滤波、高斯滤波和陆地水文信号泄漏改正,计算得到海洋等效水高变化;利用相同时间跨度的卫星测高数据和海洋温度、盐度水文观测数据,计算全球海平面变化和比容海平面变化,反演得到海水质量变化.反演的两种海水质量变化的年际变化特征一致性较好.三种数据得到的长期趋势变化,与1993~2003年的结果相比,可以看出,海水质量变化加速,并已成为全球海平面上升的主要因素.  相似文献   

6.
Abstract

Satellite radar altimetry is complementary to in situ limnimetric surveys as a means of estimating the water height of large rivers, lakes and flood plains. Production of water height time series by satellite radar altimetry technology requires first the selection of radar ground target locations corresponding to water body surfaces under study, i.e. the definition of “virtual limnimetric stations”. We propose to investigate qualitative and quantitative differences between three representative virtual station creation methodologies: (a) a fully manual method, (b) a semi-automatic method based on a land cover characterization that allows the water body surface under study to be located; and (c) an original fully automatic procedure that exploits a digital elevation model and an estimation of the river width. The results yielded by these three methods are comparable: maximum absolute magnitudes of water height differences being 0.46, 0.26 and 0.15 m for, respectively, 95, 90 and 80% of the water height values obtained. Moreover, more than 67% and 92% of time series jointly produced by the methods present root mean square differences lower than 20 and 50 cm, respectively. The results show that the fully automatic method developed herein provides as reliable results as the fully manual one. This opens the way to use of satellite radar altimetry for the generation of water height time series on a large scale, and considerably extends the applicability of satellite radar altimetry in hydrology.

Citation Roux, E., Santos da Silva, J., Vieira Getirana, A. C., Bonnet, M.-P., Calmant, S., Martinez, J.-M. & Seyler, F. (2010) Producing time series of river water height by means of satellite radar altimetry—comparative study. Hydrol. Sci. J. 55(1), 104–120.  相似文献   

7.
Monitoring Continental Surface Waters by Satellite Altimetry   总被引:4,自引:1,他引:3  
The monitoring of continental water stages is a requirement for meeting human needs and assessing ongoing climatic changes. However, regular gauging networks fail to provide the information needed for spatial coverage and timely delivery. Although the space missions discussed here were not primarily dedicated to hydrology, 18 years of satellite altimetry have furnished complementary data that can be used to create hydrological products, such as time series of stages, estimated discharges of rivers or volume change of lakes, river altitude profiles or leveling of in situ stations. Raw data still suffer uncertainties of one to several decimeters. These require specific reprocessing such as waveform retracking or geophysical correction editing; much work still remains to be done. Besides, measuring the flow velocity appears feasible owing to SAR interferometer techniques. Inundated surfaces, and the time variations of their extent, are currently almost routinely computed using satellite imagery. Thus, the compilation of the continuous efforts of the scientific community in these various investigative directions, such as recording from space the discharges of rivers or the change in water volume stored in lakes, can be foreseen in the near future.  相似文献   

8.
In this paper, three satellite derived precipitation datasets (TRMM, CMORPH, PERSIANN) are used to drive the Hillslope River Routing (HRR) model in the Congo Basin. The precipitation data are compared spatially and temporally in two forms: (1) precipitation magnitudes, and (2) resulting streamflow and water storages. Simulated streamflow is assessed using historical monthly discharge data from in situ stream gauges and recent stage data based on water surface elevations derived from ENVISAT radar altimetry data. Simulated total water storage is assessed using monthly storage change values derived from GRACE data. The results show that the three precipitation datasets vary significantly in terms of magnitudes but generally produce a reasonable hydrograph throughout much of the basin, with the exception of the equatorial regions of the watershed. The satellite datasets provide unreasonably high values for specific periods (e.g. all three in Oct–Nov; only CMORPH and PERSIANN in Mar–Apr) in the equatorial regions. Overall, TRMM (3B42) provides the best spatial and temporal distributions and magnitudes or rainfall based on the assessment measures used here. Both CMORPH and PERSIANN tend to overestimate magnitudes, especially in the equatorial regions of the Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical modelling of morphodynamics—Vilaine Estuary   总被引:1,自引:0,他引:1  
The main objective of this paper is to develop a method to simulate long-term morphodynamics of estuaries dominated by fine sediments, which are subject to both tidal flow and meteorologically induced variations in freshwater run-off and wave conditions. The method is tested on the Vilaine Estuary located in South Brittany, France. The estuary is subject to a meso–macrotidal regime. The semi-diurnal tidal range varies from around 2.5 to 5 m at neap and spring, respectively. The freshwater input is controlled by a dam located approximately 8 km from the mouth of the estuary. Sediments are characterised as mostly fines, but more sandy areas are also found. The morphology of the estuary is highly influenced by the dam. It is very dynamic and changes in a complicated manner with the run-off from the dam, the tide and the wave forcing at the mouth of the estuary. Extensive hydrodynamic and sediment field data have been collected in the past and provide a solid scientific basis for studying the estuary. Based on a conceptual understanding of the morphodynamics, a numerical morphological model with coupled hydrodynamic, surface wave and sediment transport models is formulated. The numerical models are calibrated to reproduce sediment concentrations, tidal flat altimetry and overall sediment fluxes. Scaling factors are applied to a reference year to form quasi-realistic hydrodynamic forcing and river run-off, which allow for the simulations to be extended to other years. The simulation results are compared with observed bathymetric changes in the estuary during the period 1998–2005. The models and scaling factors are applied to predict the morphological development over a time scale of up to 10 years. The influence of the initial conditions and the sequence of external hydrodynamic forcing, with respect to the morphodynamic response of the estuary, are discussed.  相似文献   

10.
The computation of mean sea surface heights from a set of collinear Geosat ERM altimeter data tracks was carried out in a collinear adjustment, where 1 cy/rev cosine and sine coefficients for each track are estimated, so the differences between the collinear tracks are minimized. Then bias/tilt cross-over adjustments of stacked Geosat and Seasat altimetry were carried out. The problems with the free surface in the cross-over adjusted altimetric surface were treated using the absolute sea surface heights relative to the geoid model OSU89B. In a combined adjustment of the two altimeter data sets using cross-over and height informations simultaneously a RMS of the cross-overs of 0.080 m and a RMS of the sea surface heights relative to OSU89B of 0.611 m were obtained.  相似文献   

11.
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China’s coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China’s coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China’s coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4–7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).  相似文献   

12.
本文研究了基于泊松小波径向基函数融合多代卫星测高及多源重力数据精化大地水准面模型的方法.分别以沿轨垂线偏差和大地水准面高高差作为卫星测高观测量,研究了使用不同类型测高数据对于大地水准面建模精度的影响.针对全球潮汐模型在浅水区域及部分开阔海域精度较低的问题,引入局部潮汐模型研究了不同潮汐模型对于大地水准面的影响.数值分析表明:相比于使用沿轨垂线偏差作为测高观测量,基于沿轨大地水准面高高差解算得到的大地水准面模型的精度更高,特别是在海域区域,其精度提高了2.3cm.由于使用沿轨大地水准面高高差作为测高观测量削弱了潮汐模型长波误差的影响,采用不同潮汐模型对大地水准面解算的影响较小.总体而言,船载重力及测高观测数据在海洋重力场的确定中呈现互补性关系,联合两类重力场观测量可以提高局部重力场的建模精度.  相似文献   

13.
Ezer  Tal 《Ocean Dynamics》2022,72(11):741-759

The long-term variability of sea level and surface flows in the Gulf of Mexico (GOM) is studied using global monthly sea level reconstruction (RecSL) for 1900–2015. The study explored the long-term relation between the dynamics of the GOM and inflows/outflows through the Yucatan Channel (YC) and the Florida Straits (FS). The results show a century-long trend of increased mean velocity and variability in the Loop Current (LC); however, no significant upward trend was found in the YC and FS flows, only increased variability. Empirical orthogonal function (EOF) analysis of sea surface height found spatial patterns dominated by variations in the LC and temporal variations on time scales ranging from a few months to multidecadal. The time evolution of each EOF mode of sea level is correlated with the velocity of either the LC, the YC, or the FS or some combination of the different flows. The mean sea level difference between the GOM and the northwestern Caribbean Sea was found to be influenced by the North Atlantic Oscillation (NAO), with unusually high differences during the 1970s when the NAO index was low and the Atlantic Ocean circulation was weak. Extreme peaks in SL difference coincide with the extension of the LC and the seasonal eddy shedding pattern. The observed seasonal cycle in the extension area of the LC as obtained from 20 years of altimeter data is significantly correlated (R = 0.63; confidence level = 98%) with the seasonal YC flow obtained from 116 years of the RecSL data. However, the same LC extension record had lower correlation (R = 0.45; confidence level = 90%) with the observed YC transport obtained from direct moored measurements over ~ 5 years, indicating the need for much longer measurements, since the LC extension and the YC flow are strongly affected by interannual and decadal variations. The study demonstrates the usefulness of even a coarse-resolution reconstruction for studies of regional ocean variability and climate change over longer time scales than current direct observations allow.

  相似文献   

14.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:13,自引:0,他引:13  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

15.
High-resolution models and realistic boundary conditions are necessary to reproduce the mesoscale dynamics of the Gulf of Mexico (GOM). In order to achieve this, we use a nested configuration of the Hybrid Coordinate Ocean Model (HYCOM), where the Atlantic TOPAZ system provides lateral boundary conditions to a high-resolution (5 km) model of the GOM . However, such models cannot provide accurate forecasts of mesoscale variability, such as eddy shedding event, without data assimilation. Eddy shedding events involve the rapid growth of nonlinear instabilities that are difficult to forecast. The known sources of error are the initial state, the atmospheric condition, and the lateral boundary condition. We present here the benefit of using a small ensemble forecast (10 members) for providing confidence indices for the prediction, while using a data assimilation scheme based on optimal interpolation. Our set of initial states is provided by using different values of a data assimilation parameter, while the atmospheric and lateral boundary conditions are perturbed randomly. Changes in the data assimilation parameter appear to control the main position of the large features of the GOM in the initial state, whereas changes in the boundary conditions (lateral and atmospheric) appears to control the propagation of cyclonic eddies at their boundary. The ensemble forecast is tested for the shedding of Eddy Yankee (2006). The Loop Current and eddy fronts observed from ocean color and altimetry are almost always within the estimated positions from the ensemble forecast. The ensemble spread is correlated both in space and time to the forecast error, which implies that confidence indices can be provided in addition to the forecast. Finally, the ensemble forecast permits the optimization of a data assimilation parameter for best performance at a given forecast horizon.  相似文献   

16.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   

17.
Sea surface temperature 1871-2099 in 14 cells around the United Kingdom   总被引:1,自引:0,他引:1  
Monthly sea surface temperature is provided for 14 locations around the UK for a 230 year period. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 climate model for predicted SST (1950-2099). Two adjustments of the forecast data sets are needed to produce confluent SST series: the 50 year overlap is used for a gross adjustment, and a statistical scaling on the forecast data ensures that annual variations in forecast data match those of historical data. These monthly SST series are available on request. The overall rise in SST over time is clear for all sites, commencing in the last quarter of the 20th century. Apart from expected trends of overall warmer mean SST with more southerly latitudes and overall cooler mean SST towards the East, more interesting statistically significant general trends include a greater decadal rate of rise from warmer starting conditions. Annual temperature variation is not affected by absolute temperature, but is markedly greater towards the East. There is no correlation of annual range of SST with latitude, or with present SST values.  相似文献   

18.
Sea surface height (SSH) as measured by satellites has become a powerful tool for oceanographic and climate related studies. Whereas in the open ocean good accuracy has been achieved, more energetic dynamics and a number of calibration problems have limited applications over continental shelves and near the coast. Tidal ranges in the Southwestern Atlantic (SWA) continental shelf are among the highest in the world ocean, reaching up to 12 m at specific locations. This fact highlights the relevance of the accuracy of the tidal correction that must be applied to the satellite data to be useful in the region. In this work, amplitudes and phases of tidal constituents are extracted from five global tide models and three regional models and compared to the corresponding harmonics estimated from coastal tide gauges (TGs) and satellite altimetry data. The Root Sum Square (RSS) of the misfit of the common set of the five tidal constituents solved by the models (M2, N2, S2, K1 and O1) is higher than 18 cm close to the coast for two of the regional models and higher than 24.5 cm for the rest of the models considered. Both values are too high to provide an accurate estimation of geostrophic non-tidal currents from satellite altimetry in the coastal region. On the other hand, the global model with the highest spatial resolution has a RSS lower than 4.5 cm over the continental shelf even when the non-linear M4 overtide is considered. Comparison with in-situ current measurements suggests that this model can be used to de-tide altimetry data to compute large-scale patterns of SSH and associated geostrophic velocities. It is suggested that a local tide model with very high resolution that assimilates in-situ and satellite data should meet the precision needed to estimate geostrophic velocities at a higher resolution both close to the coast and over the Patagonian shelf.  相似文献   

19.
Our analyses of the monthly mean air temperature of meteorological stations show that altitude, global solar radiation and surface effective radiation have a significant impact on air temperature. We set up a physically-based empirical model for monthly air temperature simulation. Combined the proposed model with the distributed modeling results of global solar radiation and routine meteorological observation data, we also developed a method for the distributed simulation of monthly air temperatures over rugged terrain. Spatial distribution maps are generated at a resolution of 1 km×1 km for the monthly mean, the monthly mean maximum and the monthly mean minimum air temperatures for the Yellow River Basin. Analysis shows that the simulation results reflect to a considerable extent the macro and local distribution characteristics of air temperature. Cross-validation shows that the proposed model displays good stability with mean absolute bias errors of 0.19°C–0.35°C. Tests carried out on local meteorological station data and case year data show that the model has good spatial and temporal simulation capacity. The proposed model solely uses routine meteorological data and can be applied easily to other regions. Supported by China Meteorological Administration key Project on New Technique Diffusion (Grant No. CMATG2006Z10) and Jiangsu Key Laboratory of Meteorological Disasters (Grant No. KLME050102)  相似文献   

20.
Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a global mapping of the time-variations of the Earth’s gravity field. Tiny variations of gravity from monthly to decadal time scales are mainly due to redistributions of water mass inside the surface fluid envelops of our planet (i.e., atmosphere, ocean and water storage on continents). In this article, we present a review of the major contributions of GRACE satellite gravimetry in global and regional hydrology. To date, many studies have focused on the ability of GRACE to detect, for the very first time, the time-variations of continental water storage (including surface waters, soil moisture, groundwater, as well as snow pack at high latitudes) at the unprecedented resolution of ~400–500 km. As no global complete network of surface hydrological observations exists, the advances of satellite gravimetry to monitor terrestrial water storage are significant and unique for determining changes in total water storage and water balance closure at regional and continental scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号