首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simplified model for the interaction of the cold solar wind with lunar magnetic anomalies is considered. Since on the illuminated side of the Moon the dynamic pressure of the solar wind significantly exceeds the magnetic pressure of the anomalies, upward propagation of the lunar field is possible only by means of diffusion. This process does not depend on the velocity but only on the concentration of the solar wind and the characteristic size of anomalies. Theoretical calculations are compared with the data of Apollo 12 and Explorer 35.  相似文献   

2.
The Giotto spacecraft is scheduled to intercept comet P/Grigg-Skjellerup on July 10, 1992. The observed outgassing rate of this comet is over an order of magnitude smaller than comet Giacobini-Zinner and over two orders of magnitude smaller than that of comet Halley. Consequently, the new data obtained during the upcoming encounter will strengthen our understanding of how the solar wind interaction with comets depends upon the neutral gas production rate. In this brief note, we make predictions of the location of the flow transition regions — i.e., the bow shock and the ionopause, and discuss the expected level of wave turbulence.  相似文献   

3.
We simulate the OH/H2O production from the action of keV protons on the lunar regolith using a vacuum chamber and a mass analyzer to examine the molecular products released from olivine and SiO2 powders during their irradiation by deuterium ions. The measured mass spectra, showing the OD/D2O signature, confirm the possibility of OH/H2O formation on the lunar surface by solar-wind hydrogen.  相似文献   

4.
Abstract We present Kr and Xe isotope data obtained by closed system stepped etching of ilmenite separates from two lunar samples exposed to the solar corpuscular radiation at different epochs. Helium, neon, and argon in the same samples were reported to consist of two components: isotopically unfractionated solar wind (SW) released in the first steps, and an isotopically heavier component (SEP) released later and, thus, sited at larger depth. The same release characteristic is now observed for the heavy noble gases. We also conclude that solar Kr and Xe consist of two isotopically different components, implanted with different energies. The SW-Kr in a recently irradiated soil has a composition very close to atmospheric Kr, which agrees with other newly reported data from stepped etch- and combustion runs. No clear evidence for temporally variable SW-Kr or SW-Xe spectra was found. “Surface correlated” Kr and Xe components “SUCOR” and “BEOC 12001” are a mixture of SW and SEP. The isotopic fractionation factors relating SW and SEP are close to the square of the mass ratios for all five noble gases. We infer that the measured Kr/Xe ratio in ilmenite is essentially identical to this ratio in the solar corpuscular radiation.  相似文献   

5.
The varying overall nature of the solar wind interaction with the ionospheres of CO and CO2-dominated comets is investigated and compared with previous results for H2O-dominated comets. It is shown that as a comet approaches the sun, it may exhibit one of two types of ionospheric transitions. (In rare circumstances, the cometary ionosphere may display a third type of transition in addition to one of the first two). For both transitions, the ionosphere turns from being hard (in other words, the ionosphere is not susceptible to compression under sudden solar wind pressure increases) to soft. However, for one type of transition, the bow shock changes from being weak (M2) to being strong (M10), whereas for the other type of transition, the bow shock remains weak. The heliocentric distance at which these transitions may occur is found to be a function of the cometary nuclear radius, the latent heat of sublimation of the surface volatiles, the surface bolometric albedo and the following ionospheric properties: the optical depth, the average ionization time scale and the amount of heat addition. Two important consequences of the strong shocks are the large solar wind velocity modulation of the energization of electrons at the bow-shock and the relatively quick formation of cometary plasma tails.These results are applied to the case of comet Humason (1962 VIII). It is shown that either a CO or CO2 dominated surface can explain not only the strong coma and tail activity of this comet at large heliocentric distances, but it can also explain the irregular activity of this comet at such distances.  相似文献   

6.
The flow of plasma on the sunward side of a comet is investigated by means of an axialsymmetric model based on hydrodynamics modified by source terms. The model assumes a given curvature of the isobaric surfaces, which corresponds to paraboloids around the nucleus of the comet. The flow on the axis can be represented by a solution of a system of seven ordinary differential equations (respectively five in case of pure photo-ionization). The flow pattern always contains a widely detached bow shock and a contact discontinuity separating a cavity with purely cometary plasma from the transition region containing also solar wind ions. The model is applied to the special case where the cometary gas is ionized by the solar UV radiation only. Numerical solutions are integrated for five levels of production of neutral gas by the comet and for seven typical situations in the undisturbed solar wind. The results imply standoff distances of the stagnation point from the nucleus of the order of 10 000 km or more, and distances of the bow shock of the order of 106–107 km.  相似文献   

7.
This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.  相似文献   

8.
Proton heating at stream interaction regions in the solar wind is investigated based on the solar wind data obtained by Suisei spacecraft between 0.68 and 1.01 AU from the Sun. The deflection angle of the solar wind flow in the ecliptic plane is used to identify the interaction region. In the solar wind flows coming from east of the Sun in low-speed streams and coming from west in high-speed streams, the radial gradient of proton temperature is flattened owing to heating in the interaction region. From comparison of the best-fitted power law dependence of proton temperature on the radial distance in the deflected flow with that in the non-deflected flow, it is suggested that heating in the interaction regions starts around 0.6–0.7 AU from the Sun.  相似文献   

9.
Conditions are presented for maintenance of asteroid magnetospheres by dipole moments and for propagation of whistler mode noise in the solar wind at asteroid distances. Surface field intensities less than one thousandth that of the Earth are found adequate for supporting magnetospheres in the quiet solar wind surrounding the larger asteroids. Magnetospheric diameters are likely to be small, however, and difficult to identify without targeted, close-approach flybys. Under most ordinary conditions, whistler noise generated in an asteroidal shock or by other interaction with the solar wind will not propagate back upstream toward the sun, but may form a detectable wake downstream. Pure standing whistler wavefronts could be a unique asteroidal phenomenon.  相似文献   

10.
In a steady-state model for the interaction of the solar wind with the atmosphere of a non-magnetic planet, the magnetized solar wind acts as a dynamo over the dayside of the planet and induces Ohmic currents in the planet's ionosphere. A model for the dynamo mechanism and for the induced current configuration is developed. Based on this model and assumed model atmospheres of Mars and Venus, the distribution of currents entering the ionosphere through the ionopause is calculated. The requirement that the total current be of such a magnitude as to cancel the shock-compressed interplanetary magnetic field fixes the ionopause altitude. The calculations for Venus are in reasonable agreement with observations. The calculations for Mars indicate the possibility of an observable ionopause in the altitude range from 325 to 425 km.  相似文献   

11.
Laboratory experiments are described to simulate the solar wind flowing around nonmagnetic planets for three cases: non-conducting and ideally conducting planets, and a planet with a gaseous shell. A glass sphere was used as a model of a non-conducting planet (the Moon). Spatial distributions of plasma density and magnetic field strength that have been obtained agree with the data from measurements in space. However, the magnetic field does not increase before the rarefaction wave in the model experiment. A field increase was observed only for a conducting lunella: this argues in favour of the existence of a high conduction region on the Moon. A wax ball was used to model phenomena on the day-side of non-magnetic celestial bodies with a gaseoue shell (Venus, comets). Its surface easily evaporates in the plasma flow, and ionized evaporation products form an artificial ionosphere. The magnetic field frozen in the plasma flow is shown to be a determinative factor in the formation of a sharp ionospheric boundary. The supersonic plasma flow that interacts with the ionosphere gives rise to a stationary shock wave.  相似文献   

12.
The lunar surface is bathed in a variety of impacting particles originating from the solar wind, solar flares, and galactic cosmic rays. These particles can become embedded in the regolith and/or produce a range of other molecules as they pass through the target material. The Moon therefore contains a record of the variability of the solar and galactic particle fluxes through time. To obtain useful temporal snapshots of these processes, discrete regolith units must be shielded from continued bombardment that would rewrite the record over time. One mechanism for achieving this preservation is the burial of a regolith deposit by a later lava flow. The archival value of such deposits sandwiched between lava layers is enhanced by the fact that both the under- and over-lying lava can be dated by radiometric techniques, thereby precisely defining the age of the regolith layer and the geologic record contained therein. The implanted volatile species would be vulnerable to outgassing by the heat of the over-lying flow, at temperatures exceeding 300-700 °C. However, the insulating properties of the finely particulate regolith would restrict significant heating to shallow depths. We have therefore modeled the heat transfer between lunar mare basalt lavas and the regolith in order to establish the range of depths below which implanted volatiles would be preserved. We find that the full suite of solar wind volatiles, consisting predominantly of H and He, would survive at depths of ∼13-290 cm (for 1-10 m thick lava flows, respectively). A substantial amount of CO, CO2, N2 and Xe would be preserved at depths as shallow as 3.7 cm beneath meter-thick flows. Given typical regolith accumulation rates during mare volcanism, the optimal localities for collecting viable solar wind samples would involve stacks of thin mare lava flows emplaced a few tens to a few hundred Ma apart, in order for sufficient regolith to develop between burial events. Obtaining useful archives of Solar System processes would therefore require extraction of regolith deposits buried at quite shallow depths beneath radiometrically-dated mare lava flows. These results provide a basis for possible lunar exploration activities.  相似文献   

13.
14.
Some new ideas on the interaction of the solar wind with the magnetosphere are brought forward. The mechanism of reflection of charged particles at the magnetopause is examined. It is shown that in general the reflection is not specular but that a component of momentum of the particle parallel to the magnetopause changes. A critical angle is derived such that particles whose trajectories make an angle less than it with the magnetopause enter the magnetosphere freely, so transferring their forward momentum to it. Spatially or temporally non-uniform entry of charged particles into the magnetosphere causes electric fields parallel to the magnetopause which either allow the free passage of solar wind across it or vacuum reconnection to the interplanetary magnetic field depending on the direction of the latter. These electric fields can be discharged in the ionosphere and so account qualitatively for the dayside agitation of the geomagnetic field observed on the polar caps. The solar wind wind plasma which enters the magnetosphere creates (1) a dawn-dusk electric field across the tail (2) enough force to account for the geomagnetic tail and (3) enough current during disturbed times to account for the auroral electrojets. The entry of solar wind plasma across the magnetosphere and connection of the geomagnetic to interplanetary field can be assisted by wind generated electric field in the ionosphere transferred by the good conductivity along the geomagnetic field to the magnetopause. This may account for some of the observed correlations between phenomena in the lower atmosphere and a component of magnetic disturbance.  相似文献   

15.
Hydrodynamic and electrodynamic problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated.The initial fact, well established, is that the density of the magnetic field energy in the solar wind is rather small. Magnetic field intensity and orientation are shown to determine the character of the solar wind flow around the magnetosphere. For mean parameters of the wind, if the tangential component of the magnetic field is more or equal 5γ, the flow in the magneto-sheath will be laminar. For other cases the flow is of a turbulent type.For turbulent flow, typical plasma parameters are estimated: mean free path, internal scale of inhomogeneities and dissipated energy. The results obtained are compared with experimental data.For the case of laminar flow, special attention is paid to the situation when magnetic fields of the solar wind and Earth are antiparallel. It is suggested, on the basis of solid arguments, that the southward interplanetary field diffuses from the magnetosheath into the Earth's magnetosphere. These ideas are used for the estimation of the distance to the magnetopause subsolar point. A detailed comparison with results of observation is made. The coincidence is satisfactory. Theoretical investigation has been made to a great extent for thin magnetopause with thickness δRHe-gyroradius of an electron.It is shown that during magnetospheric substorms relaxation oscillations with the period τ = 100–300 sec must appear. A theorem is proved about the appearance of a westward electrical field during the substorm development, when the magnetosphere's day-side boundary moves Earthward and about the recovery phase, when the magnetopause motion is away from the Earth, when there is an eastward electrical field.In the Appendix, plasma wave exitation in the magnetopause is considered and conductivity magnitudes are calculated, including the reduction due to the scattering by plasma turbulence.  相似文献   

16.
Plasma and field relationships observed across the nightside of Venus evidence a chaotic variety of interactions between the ionosphere and the combined effect of the solar wind and interplanetary magnetic field draped about the planet. Close examination of these data reveal within the chaos a number of repeatable signatures key to understanding fundamental field-plasma interactions. Observed from the Pioneer Venus Orbiter, (PVO), nightside conditions range from extensive, full-up ionospheres with little evidence of dynamic or energetic perturbations, to an almost full depletion, sometimes described as disappearing ionospheres. Between these extremes, the ionospheric structure is often irregular, sometimes exhibiting well-defined density troughs, at other times complex intervals of either abundant or minimal plasma concentration. Consistently, large B-fields (typically exceeding 5–10 nanoteslas) coincide with plasma decreases, whereas stable, abundant plasma distributions are associated with very low-level field. We examine hundreds of nightside orbits, identifying close correlations between regions of elevated magnetic fields featuring polarity reversals, and (a) exclusive low-frequency or distinctive broadband noise, or both, in the electric field data, (b) turbulent, superthermal behavior of the the ions and electrons. We review extensive studies of nightside fields to show that the correlations observed are consistent with theoretical arguments that the presence of strong magnetic fields within normal ionospheric heights indicates the intrusion of magnetosheath fields and plasma within such regions. We find abundant evidence that the ionosphere is frequently disrupted by such events, exhibiting a chaotic, auroral-like complexity appearing over a wide range of altitude and local time. We show that field-plasma disturbances, widely suggested to be similar to conditions in the Earth's auroral regions, are tightly linked to the electric field noise otherwise attributed to lightning. Owing to the coincidence inherent in this relationship, we suggest that natural, predictable plasma instabilities associated with the plasma gradients and current sheets evident within these events produce the E-field noise. The data relationships argue for a more detailed investigation of solar wind induced E-field noise mechanisms as the appropriate scientific procedure for invoking sources for the noise previously attributed to lightning. Consistent with these views, we note that independent analyses have offered alternative explanations of the noise as arising from ionospheric disturbances, that repeated searches for optical evidence of lightning have found no such evidence, and that no accepted theoretical work has yet surfaced to support the inference of lightning at Venus.  相似文献   

17.
Endeve  Eirik  Leer  Egil 《Solar physics》2001,200(1-2):235-250
In coronal holes the electron (proton) density is low, and heating of the proton gas produces a rapidly increasing proton temperature in the inner corona. In models with a reasonable electron density in the upper transition region the proton gas becomes collisionless some 0.2 to 0.3 solar radii into the corona. In the collisionless region the proton heat flux is outwards, along the temperature gradient. The thermal coupling to electrons is weak in coronal holes, so the heat flux into the transition region is too small to supply the energy needed to heat the solar wind plasma to coronal temperatures. Our model studies indicate that in models with proton heating the inward heat conduction may be so inefficient that some of the energy flux must be deposited in the transition region to produce the proton fluxes that are observed in the solar wind. If we allow for coronal electron heating, the energy that is needed in the transition region to heat the solar wind to coronal temperatures, may be supplied by heat conduction from the corona.  相似文献   

18.
The outer regions (r > 2.3 Rj; Rj = radius of Jupiter) of the magnetosphere of Jupiter will systematically accumulate plasma. If sufficient plasma accumulates, the field lines must open to allow the plasma to escape. Available energy sources appear able to supply plasma at a high enough rate to keep the field lines constantly open beyond about 60 RJ. We suggest that the solar wind interaction with Jupiter may be essentially different from that with the Earth, with the Jovian magnetosphere opening up to form a planetary wind.  相似文献   

19.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

20.
Rauer  H. 《Earth, Moon, and Planets》1997,79(1-3):161-178
The extraordinary brightness of comet Hale-Bopp (C/1995 O1) offered the rare opportunity to investigate its ion tail by observations over a wide range of wavelengths. For the first time, ion emission lines could be detected in the radio domain, originating from H3O+, HCO+ and CO+ ions. Observations in the extreme ultraviolet range showed O+ emissions. Optical imaging observations show a spectacular detail of structures in the ion tail. The combined measurements of the ion spatial distribution and dynamic provide a wealth of information which needs to be understood in terms of models of the comet-solar wind interaction and ion-neutral molecule reactions in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号