首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palaeo- and archaeointensity determinations of the geomagnetic field are limited by mineralogical alteration that may occur when samples are heated in the laboratory to produce a TRM ( Thellier & Thellier 1959 ; Shaw 1974 ). By using microwave excitation of the magnetic grains we have been able to create a TRM without significantly heating the bulk samples, thereby avoiding thermal alteration ( Walton et al . 1993 ; Shaw et al . 1996 ). When applied to Peruvian ceramics in a manner analogous to the standard Thellier method, the microwave technique was found to reduce the scatter dramatically in the archaeointensity results ( Shaw et al . 1996 ). In the present study we apply this microwave technique to a collection of Chinese ceramics covering the time interval 2700–7500  yr BP. These ceramics have already been investigated using adaptations of both Thellier's ( Coe 1967 ) and Shaw's ( Rolph & Shaw 1985 ) palaeointensity methods ( Yang et al . 1993a ). Although an acceptable agreement was found between those two methods, the equivalent virtual axial dipole moments (VADMs) were significantly lower than for the global model of McElhinny & Senanayake (1982 ). The present study, using the microwave technique with cooling-rate correction, has provided more consistent VADMs, and is much closer to the global model.  相似文献   

2.
Thellier palaeointensity analyses were carried out on samples from three quartz porphyry intrusions located within the western part of the Bohemian Massif close to the German-Czech Republic border. These intrusives have been dated at 280-275 Ma. which places them in the main part of the Permo-Carboniferous (Kiaman) Reversed Superchron (P-CRS). This age is consistent with the mean characteristic remanence direction calculated at D/ I = 204/- 1, giving a VGP at 36N, 341E. Palaeointensity values range from 6.6 μT to 22.1 μT, with a mean value of 12.0 ± 1.3 μT, which has a corresponding VDM value of (3.0 ± 1.2) × 1022 A m2. This suggests that the geomagnetic field strength recorded by the quartz porphyries is only 37 per cent of the current value, supporting recent studies that report a field strength of between 25 and 40 per cent of the present-day value during the P-CRS.  相似文献   

3.
The geomagnetic field intensity during Archaean times is evaluated from a palaeomagnetic and chronological study of a dolerite dyke intruded into the 3000 Ma Nuuk Gneisses at Nuuk (64.2°N, 51.7°W), west Greenland. Plagioclase from the dolerite dyke yields a mean K-Ar age of 2752 Ma. Palaeomagnetic directions after thermal demagnetization of the dyke and the gneiss reveal a positive baked-contact test, indicating that the high-temperature-component magnetization of the dyke is primary. Thellier experiments on 12 dyke specimens yield a palaeointensity value of 13.5±4.4 μT. The virtual dipole moment at ca. 2.8 Ga is 1.9±0.6 × 1022 Am2, which is about one-quarter of the present value. The present study and other available data imply that the Earth's magnetic field at 2.7 ∼ 2.8 Ga was characterized by a weak dipole moment and that a fairly strong geomagnetic field similar to the present intensity followed the weak field after ca. 2.6 Ga.  相似文献   

4.
It is extremely valuable to study historic lava flows where the geomagnetic field at their time of extrusion is well known. In this study, two vertical sections, 16 m apart, have been sampled from the approximately 1 m thick 1960 Kilauea lava flow, Hawaii. Variations are seen in the rock-magnetic and palaeomagnetic properties between and within the two sections, indicating that there are small-scale lateral and vertical variations in the lava flow. The two sections showed different responses to microwave palaeointensity analysis. Section H6001 generally gave ideal linear behaviour on plots of natural remanent magnetization (NRM) lost against microwave-induced thermoremanent magnetization (TM RM) gained, whilst the majority of samples from H6002 showed anomalous two-slope behaviour. When all plots were interpreted by taking the best-fitting line through all points, the flow mean intensity for H6001 was 31.6 ± 3.6 μT and that for H6002 was 37.1 ± 6.4 μT, compared with the expected intensity of 36 μT. Additional historic flows need to be studied in order to ascertain whether this behaviour is typical of all lava, and whether it is best to always interpret NRM lost/TM RM gained plots by taking the line of best fit regardless of shape.  相似文献   

5.
The bane of conventional Thellier-type palaeointensity experiments is the thermal alteration of the samples during experimentation. However, high-frequency microwaves can be used to stimulate the magnetic minerals directly, thus eliminating the need for the bulk sample to be heated ( Walton et al . 1993 ). The microwave technique has been successfully applied to ceramics ( Shaw et al . 1996 , 1999 ), and here we present results for historic lavas from Mt Etna, Sicily. 20 samples were randomly selected from 10 different historic flows dating from 1843 to 1983. Hysteresis parameters were monitored as a check for alteration during experimentation and minimal alteration was found. Rock-magnetic analysis and AF plus microwave demagnetizations were carried out on all samples, and microwave intensity analysis was carried out on those samples that were stable to microwave demagnetization (16 in total). With one exception, all samples gave high-quality intensity results. Two or three subsamples from each sample were investigated and a weighted average calculated to give a single estimate of the field. When the intensity values were compared with the SV model based on direct observatory measurements ( Bloxham & Gubbins 1985 ), it was found that those samples that contained a high multidomain (MD) component gave intensity values around 20 per cent lower than expected. This can be explained by the cooling rate effect ( Dodson & McClelland-Brown 1980 ) and/or the presence of an MD component ( McClelland et al. 1996 ). Those samples with the lowest numbers of MD grains gave field values which, within error, were the same as those for the model, or slightly too high: this is compatible with the cooling rate effect.  相似文献   

6.
From a large collection of Ethiopian flood basalts (~30  Myr old) sampled for magnetostratigraphy, 40Ar/39Ar geochronology and geochemical investigations, 47 samples were selected in order to test their suitability for Thellier palaeointensity experiments. Only 17 samples from eight individual flows yielded reliable palaeointensity estimates, with flow-mean virtual dipole moments ranging from 3.0 to 10.5 × 1022  A  m2 .
  A critical review of the Oligocene palaeointensity data set, including these new Ethiopian data, indicates an Oligocene mean virtual dipole moment of 5.1 ± 2.5 × 1022  A  m2 for the complete data set. After applying mild selection criteria, the reduced data set yields a mean value of only 4.6 ± 1.9 × 1022  A  m2 . This value is significantly lower than the present-day field strength but is higher than the Mesozoic dipole low mean field. This low Oligocene field might be in agreement with the high palaeosecular variation and rather high non-dipole field invoked around 30  Ma. However, the Oligocene data set is largely dependent on the palaeointensity determinations from Armenia, obtained mainly from baked contacts, which show amazingly low dispersion at both flow and between-flow levels. More data are needed to reduce the weight of these determinations on the mean value and avoid a possible bias.  相似文献   

7.
b
Sixteen samples representing eight Tertiary volcanic units from north-east Jalisco, Mexico were studied in an attempt to estimate the palaeointensity of the Earth's magnetic field. The experimental technique used was similar to that proposed by Shaw (1974) and an attempt was made to incorporate further criteria using the directional behaviour of the NRM, TRM and two ARMs during the af treatment and measuring the rate of ARM acquisition before and after heating. The directional information was used for checking the stability of all remanent magnetizations involved and for correcting the ARM test values. In addition the TRM directional behaviour could be a valuable yet simple test to detect the problem of insufficient heating. The use of the ARM acquisition test in the palaeointensity determination permits the full investigation of the coercive force spectrum and could lead to a more reliable palaeointensity method. This combined ARM method was applied to one sample. Further work is needed to understand the NRM—ARM1 and TRM—ARM2 relationships if the ARM tests are to be used for correcting TRM alteration effects. Whole rock K—Ar age determinations were carried out on samples from four selected units. Ten samples, representing six of the units, are considered to yield reliable palaeointensity values. Mean values were computed for each unit and reduced to the palaeoequator. The mean palaeoequatorial values and K—Ar ages determined are: I (13 |Mp 2 Myr), 0.504 Oe; II, 0.453 Oe; III, 0.439 Oe; VI (52 |Mp 10 Myr), 0.074 Oe; VII (14 |Mp 2 Myr), 0.187 Oe and VIII (12 |Mp 2 Myr), 0.251 Oe. These results agree reasonably well with those from previous studies. A large number of palaeointensity estimations, many more than currently available, are required to obtain an average estimate of the behaviour of the Earth's magnetic field during the Tertiary.  相似文献   

8.
In the pseudo-Thellier method for relative palaeointensity determinations (Tauxe et al. 1995) the slope of the NRM intensity left after AF demagnetization versus ARM intensity gained at the same peak field is used as a palaeointensity measure. We tested this method on a marine core from the Azores, spanning the last 276  kyr. We compared the pseudo-Thellier palaeointensity record with the conventional record obtained earlier by Lehman et al . (1996 ), who normalized NRM by SIRM. The two records show similar features: intensity lows with deviating palaeomagnetic directions at 40–45  ka and at 180–190  ka. The first interval is associated with the Laschamps excursion, while the 180–190  ka low represents the Iceland Basin excursion (Channell et al. 1997). The pseudo-Thellier method, in combination with a jackknife resampling scheme, provides error estimates on the palaeointensity.
  Spectral analysis of the rock magnetic parameters and the palaeointensity estimates shows orbitally forced periods, particularly 23  kyr for climatic precession. This suggests that palaeointensity is still slightly contaminated by climate. Fuzzy c -means cluster analysis of rock magnetic and geochemical parameters yields a seven-cluster model of predominantly calcareous clusters and detrital clusters. The clusters show a strong correlation with climate, for example samples from detrital clusters predominantly appear during rapid warming. Although both the pseudo-Thellier palaeointensity m a and fuzzy clusters show climatic influences, we have not been able to find an unambiguous connection between the clusters and m a .  相似文献   

9.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   

10.
We report on a detailed palaeomagnetic study of the Miocene Farellones volcanic formation in the Chilean Andes near Santiago (two sections, 37 sites, about 400 orientated cores). Petrological observations show evidence of low-grade metamorphism increasing downwards through the volcanic sequence. Optical observations of opaque minerals and magnetic experiments suggest that in many cases maghemitization is associated with hydrothermal alteration. However, thermal demagnetization data indicate that the low-grade metamorphism did not significantly modify the direction of the primary remanent magnetization recorded at the time of emplacement of the volcanic lava flows. Four intervals of polarity with two intermediate palaeodirections were observed in the ~650-m-thick composite section. According to the dispersion of flow average directions, palaeosecular variation was slightly larger than that observed in general during the Upper Cenozoic. The site mean directions obtained in this study differ significantly from the expected Miocene direction. Clockwise rotations of up to 20° of small blocks are probably associated with the deformation of the Andean Cordillera since middle Miocene times. Geomagnetic palaeointensity data were obtained, using the Thellier method, on 24 samples from eight distinct lava flows. The flow mean VDM varies from 1.4 to 4.0 × 1022 A m−2. Altogether, our data seem to suggest the existence of a relatively low geomagnetic field undergoing large fluctuations. Although a linear relationship was observed between the natural remanent magnetization and the thermal remanent magnetization acquired during the Thellier–Thellier experiments, undetected chemical alteration of the magnetic minerals during hydrothermalism may also explain the unusually low palaeointensity obtained.  相似文献   

11.
Summary. Experiments were done to test the additivity of partial thermal remanent magnetizations (PTRMs) for prepared samples containing magnetite particles whose sizes range from SD (single domain) to MD (multidomain). The experiments compare the sum of two PTRMs with total-TRM, all produced by the same external field of 0.47 oe. The most significant conclusion of this paper is that, to first order, the additivity of PTRMs is obeyed for the magnetites of this study regardless of particle size. However, small, higher order deviations from additivity occur such that ΣPTRM > TRM by an average of about 1 per cent. Though small, these departures from additivity are significant at the 99 per cent confidence level, and they can be understood in terms of Néel's theory for SD particles. The small departures from additivity are intrinsic to the experimental procedure in which some particles acquire remanence twice, in each of the two PTRM steps. In the limit of small inducing fields additivity should be obeyed exactly for the magnetites of this study and for samples of interest in palaeomagnetism. The deviations from additivity should have no effect on palaeointensity determinations by the Thelliers' version of the Thellier palaeointensity method. For palaeointensity determinations by Coe's version of the Thellier method the effects of deviations from additivity would be very small, less than 4 per cent on the average for a worst-case experimental configuration, and these effects can be minimized by producing PTRMs parallel to the original NRM and by using weak laboratory fields.  相似文献   

12.
Palaeomagnetic results are presented from a volcanic sequence in Zhijin County, Guizhou Province, Southern China. The lavas and associated volcanic breccias comprising the sequence represent a southern extension of the Emeishan volcanic province. Biostratigraphic dating of interbedded limestone units and stratigraphic constraints indicate that the section formed during the late Permian (∼263–255  Ma), and is thus somewhat older than the Emei stratotype section in Sichuan Province, and close in age to reported estimates of the termination of the Permo-Carboniferous (Kiaman) reverse superchron. Rock magnetic analyses and reflected light microscopy indicate that the magnetic mineralogy of the lava units is dominated by fresh, primary magnetites containing a significant fraction of single-domain grains. Thermal demagnetization behaviour of the breccia units is poor, but most lava samples have one or two components of remanence above 250 °C. The normal polarity characteristic remanence held by the lavas implies a post-Kiaman age for this succession and suggests that the termination of the Kiaman occurred prior to 263  Ma, supporting recently published estimates. According to standard criteria, Thellier palaeointensity results from the lavas are of good quality and reveal that the dipole field strength was comparatively low shortly after the termination of the superchron. 80 per cent of samples record relative VDM values in the range 42–52 per cent of the present-day value, supporting recent studies of mid-Kiaman field intensity. This suggests that a low-energy dipole existed at least between 300 and 255  Ma and does not appear to have been confined to the stable reverse polarity interval.  相似文献   

13.
A collection of ceramics and samples, collected from north-east China with ages ranging from 1000 to 7000 years, have been investigated using a modified version of the Shaw palaeointensity techniques (Shaw 1974; Rolph & Shaw 1985) in which only partial NRMs and TRMs (PNRMs and PTRMs) with blocking temperatures (Tb) above 300 C are used after pre-selection of samples by mineral magnetic analysis. A secular variation curve obtained from this study is quite consistent with previous results from other areas of China (Wei et al. 1987; Tang et al. 1991), as well as with the global model of McElhinny & Senanayake (1982). Comparison of the Chinese results with contemporaneous results from Greece (Aitken et al. 1989) has allowed us to track the movement of a large non-dipole anomaly as it drifts westwards.  相似文献   

14.
13 lava flows of known age (ages from 14C dating), which have been erupted in the last 30 000 years, have been studied to determine the palaeosecular variation of the geomagnetic field in Central Mexico. Samples were taken from two different monogenetic volcanic fields: the Michoacan-Guanajuato volcanic field (six sites) and the Chichinautzin Formation (seven sites), both part of the Transmexican Volcanic Belt. The lavas were studied in detail using rock magnetic methods (magnetic susceptibility at room temperature, low-temperature susceptibility behaviour, hysteresis loops, Curie temperatures), combined with reflected light microscopy, in order to deduce their magnetic mineralogy and the domain states of the magnetic minerals. The magnetic carriers are titanomagnetites, which show differing degrees of high-temperature deuteric oxidation, and seem to be predominantly pseudo-single domain (PSD), though in many cases are probably a mixture of domain states. Mean palaeomagnetic directions and palaeointensity values using Shaw and Thellier techniques were obtained using several specimens from each flow. Our data seem to indicate a sharp easterly swing in declination about 5000 years ago, which is also observed in lake sediments from Central Mexico. The calculated values of the virtual dipole moment (VDM) range from 3.1 to 14.9 × 1022 A m2. Our data indicate that the virtual dipole moment seems to have increased gradually in magnitude over the last 30 kyr, with a peak at about 9000 years BP. These are features that have been observed in other parts of the globe and are probably caused by variations in the dipole part of the geomagnetic field.  相似文献   

15.
11 million years of Oligocene geomagnetic field behaviour   总被引:2,自引:0,他引:2  
An 11 million year long record of the Oligocene geomagnetic field has been obtained from pelagic sediments of DSDP Hole 522 An average sample spacing of 4 cm yielded approximately one specimen per 4 to 8 kyr. The rock magnetics are remarkabh consistent across the entire interval. Previous work demonstrated a magnetic mineralogy dominated by magnetically stable magnetite. The natural remanent magnetism (NRM) carries an Oligocene polarity timescale that is in excellent agreement with the Oligocene reversal record as determined from marine magnetic anomalies (MMAs), including many of the so-called 'crypto-chrons'. Normalized NRM intensities from the undisturbed portions of the record yield a time series of variations with features consistent with a number of other palaeointensity time series derived from both sedimentary and lava sequences. These features include consistent, major decreases in palaeointensity (DIPs) at reversal boundaries, and occasional DIPs between reversal boundaries that could correspond to lineated 'tiny wiggles' in the MMA records. The data set suggests that the overall field strength was 40 per cent higher in the first half of the Oligocene when the average reversal frequency was 1.6 Myr-1 than in the second half when the reversal frequency was 4 Myr-1. There is also a weak dependence of average field strength on length of polarity interval. Finally, in the three cores suited to spectral analysis (of coherent polarity and relative intensity independent of lithological contamination), there is a persistent ca. 30–50ka periodicity in the variations of the relative intensity, suggesting that the geomagnetic field 'pulses' at about this frequency, not only during the Brunhes (as demonstrated by Tauxe & Shackleton 1994), but in the Oligocene as well.  相似文献   

16.
Summary. Using natural volcanic rocks which acquired thermoremanence (TRM) in known fields, reliability of various palaeointensity methods using alternating field (AF) demagnetization were evaluated. Natural remanence (NRM), TRM and anhysteretic remanences (ARM's) before and after heating were stepwisely AF demagnetized following Shaw's method.
It was found that the coercivity spectra of TRM and ARM in these samples are very similar, and that even when changes occurred during heating, the changes for two remanences are quite similar in many samples. Therefore, Shaw's method of palaeointensity determination, which incorporates ARM checks to the conventional comparison of NRM and TRM coercivity spectra, gives results as reliable as those obtained by the Thellier method. Many examples were demonstrated in which TRM and ARM intensities changed substantially by heating, but without changes in the shape of their coercivity spectra. Such changes cannot normally be detected and erroneous palaeointensities with apparent internal consistency would be obtained by usual AF demagnetization methods.
Although ARM is quite similar to TRM, the rate of acquisition of ARM and TRM in weak fields varies by a factor of five among the present samples. To determine palaeointensities from the linear relation between ARM and TRM, it is necessary to determine experimentally the relative acquisition rate of these remanences. Therefore, methods based only on NRM-ARM relations would not give palaeointensities with acceptable errors.  相似文献   

17.
A new high-resolution magnetostratigraphic record from the eastern Arctic Ocean has yielded further evidence for the existence of the Laschamp excursion (37–35  ka), the Mono Lake excursion (27–25.5  ka) and possibly another very short excursion (22  ka) inferred from steep negative inclinations. Ages are based on nine AMS (accelerator mass spectrometry) 14C dates, oxygen isotope stratigraphy and correlation with ODP site 983. Estimates of relative palaeointensity variations for the time interval from 80 to 10  ka have revealed that the documented geomagnetic excursions are linked to large fluctuations of the relative palaeointensity. The lowest values were obtained for the two excursions and the normal–reversed (N–R) and reversed–normal (R–N) transitions of the Laschamp polarity excursion, which itself is characterized by a slight increase of relative palaeointensity during its reversed state. The results are in general agreement with palaeointensity studies from other regions, indicating that these fluctuations could be global phenomena and that the geomagnetic field of the Brunhes Chron was very variable in amplitude as well as in geometry. The new result is one of the rare records comprising large directional as well as large relative palaeointensity variations.  相似文献   

18.
The intensity of rotational remanent magnetization (RRM) acquired by single-domain greigite at a rotation frequency of 5 rps was combined with measurements of anhysteretic remanent magnetization (ARM) to calculate the effective biasing field ( Bg ) that produced the RRM. Samples of single-domain greigite had Bg values between -137 and -84 μT, and a MDFRRM of c. 80 mT. By contrast, a suite of natural and synthetic ferrimagnetic iron oxide samples, including single-domain magnetite and y Fe3O4 tape particles, acquired Bg values between -3 and -14 μT, and MDFRRM ranged between 43 and 68 mT (when RRM was acquired). Multidomain magnetite did not acquire a RRM. Bg values at 5 rps were calculated from previously published data for magnetite particles of different grain sizes, which revealed a minimum Bg value of -24 μT and a MDFRRM of 57 mT for the finest fraction (0.2-0.8 μm in diameter). In a geological example, measurements of Bg and MDFRRM were used to detect the presence of greigite in a 4 m long Late Weichselian sediment core. Variations in inclination, declination and the intensity of the natural remanent magnetization (NRM) correlate with changes in magnetic mineralogy.  相似文献   

19.
Summary. Susceptibility, thermo-remanent magnetization (TRM) and isothermal remanent magnetization (IRM) anisotropy ellipsoids have been determined for several rock samples. The results indicate that the ellipsoid of initial susceptibility is less anisotropic than the TRM and low field IRM ellipsoids which are found experimentally to be of identical shape. This suggests that palaeomagnetic data for anisotropic rocks may be corrected by using the anisotropy ellipsoid determined from magnetically non-destructive low field IRM measurements. Such IRM measurements can also be used to obtain anisotropy axes of samples which are inherently anisotropic but which have a susceptibility which is too weak to be accurately measured. The results for a series of artificial anisotropic samples containing magnetite particles of different sizes (in the range 0.2–90 μm) were very similar to those for the rocks. In contrast, a comparison of the susceptibility and IRM ellipsoids for anisotropic samples containing particles from a magnetic tape gave very different results in accordance with theory. Such results imply that susceptibility and IRM ellipsoids could be used to determine whether anisotropic rocks contain uniaxial single-domain particles (magnetization confined to the easy axis) or whether the particles are essentially multidomain.  相似文献   

20.
Summary. The frozen flux approximation of Roberts & Scott is a constraint on the core field that can be used to aid interpretation of the very sparse datasets that palaeomagnetism and archaeomagnetism provide. It gives bounds on the size of the components of the magnetic field at a point, of the Gauss coefficients, and, if valid over such long time periods, limits the shape of the field during transitions between normal and reversed polarities. The maximum intensity at a point, consistent with the present flux, is 281 μT or 4 times the maximum field observed today. The present dipole is about 50 per cent of its upper bound. Polarity reversal is impossible if the transition field is purely axisymmetric. None of the measurements we consider violate the frozen flux approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号