首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the generalization of the compositions of melt inclusions and quenched glasses from basaltic rocks, the average compositions of magmas were estimated for mid-ocean ridges (MOR), intraplate continental environments (CR), and ocean islands and plateaus (OI). These compositions were used to constrain the average contents of trace and volatile elements in mantle sources. A procedure was developed for the estimation of the average contents of incompatible elements, including volatiles (H2O, Cl, F, and S), in the mantle. A comparison of the obtained average contents for the depleted mantle (DM) with the available published estimates showed that the contents of most incompatible trace elements (H2O, Cl, F, Be, B, Rb, Sr, Zr, Ba, La, Ce, Nd, Sm, Eu, Hf, Ta, Th, and U) can be reliably estimated from the ratio of K to the desired trace element in the MOR magmas and the average content of K in the DM. For Nb, Ti, P, S, Li, Y, and heavy REE, we used the ratios of their contents to an element with a similar degree of incompatibility in MOR magmas (U for Nb and Dy for the other elements). This approach was used to determine the average contents of incompatible elements in oceanic plume mantle (OPM) and the subcontinental mantle of intraplate settings or continental plume mantle (CPM). It was shown that the average composition of both suboceanic and subcontinental mantle plumes is moderately enriched compared with the DM in the most incompatible elements (K, U, Ba, and La) and volatile components (H2O, Cl, and F). The extent of volatile component enrichment in the plume mantle (500–1500 ppm H2O) is insufficient for a significant depression of the mantle solidus. Therefore, mantle plumes must be hotter than the ambient depleted mantle. The average contents of incompatible trace elements in the OPM are similar to those of the primitive mantle, which could be related either to the retention of primitive mantle material in the regions of plume generation or to DM fertilization at the expense of the deep mantle recycling of crustal materials. In the latter case, the negative anomaly of water in the trace-element distribution patterns of the OPM is explained by the participation of dehydrated crust in its formation. Variations in the compositions of magmas and their sources were considered for various geodynamic settings, and it was shown that the sources are heterogeneous with respect to trace and volatile components. The chemical heterogeneity of the magma sources and gradual transitions between them suggest that the mantle reservoirs interact with each other. Chemical variations in continental and oceanic plume magmas can be attributed to the existence of several interacting sources, including one depleted and at least two enriched reservoirs with different contents of volatiles. These variations are in agreement with the zoned structure of mantle plumes, which consist of a hot and relatively dry core, a colder outer shell with high contents of volatile components, and a zone of interaction between the plume and depleted mantle.  相似文献   

2.
Using our database on major, trace, and volatile element contents in melt inclusions in minerals and quenched glasses of volcanic rocks reported in the literature, we compared the mean contents of 71 chemical elements in melts from the mid-ocean ridges (MORB) of the Atlantic, Pacific, and Indian oceans and determined the mean MORB composition for all the oceans of the Earth (global MORB composition). Mean ratios of incompatible trace and volatile components (H2O/Ce, K2O/Cl, Nb/U, Ba/Rb, Ce/Pb, Nb/U, etc.) were calculated for magmatic melts from all the oceans. Variations of these parameters were estimated, and significant differences between the melts of the Atlantic and Pacific oceans were established.  相似文献   

3.
陈静  陈双双  高锐  刘嘉麒 《岩石学报》2023,39(8):2379-2401

沙茨基海隆(Shatsky Rise)是白垩纪早期形成的西北太平洋大火成岩省, 其成因和演化过程目前仍存在较大争议。本次研究对沙茨基海隆白垩纪玄武岩进行了全岩主量、微量元素、Sr-Nd-Pb同位素的分析。沙茨基海隆玄武岩主要属于拉斑玄武岩, 具有较亏损的大离子亲石元素和轻稀土元素以及较富集的重稀土元素的特征, 没有明显的Eu异常(δEu=0.99~1.29), 与正常洋中脊玄武岩(N-MORB)的微量元素配分模式较为相似。然而该系列玄武岩却具有相对较富集的初始87Sr/86Sr(0.702986~0.703991)和143Nd/144Nd(0.513034~0.513194)同位素比值、较富集的207Pb/204Pb(15.439~15.508)和208Pb/204Pb(37.853~38.488)同位素比值, 与富集的洋岛玄武岩(OIB)和岛弧火山岩的同位素成分较为相似, 且源区混入高U/Pb比值(HIMU型)的富集地幔成分。稀土元素部分熔融模拟反演表明沙茨基海隆火山岩的原始岩浆可能起源于尖晶石相二辉橄榄岩源区, 且具有较高程度的部分熔融作用(>10%)。在以上研究基础上, 本文提出地幔柱-洋中脊相互作用模型来解释沙茨基海隆拉斑玄武岩较亏损的不相容元素成分和较富集的同位素成分这一特殊地球化学特征。由于来自扩张洋中脊的强大拉张应力的影响, 地幔柱岩浆物质将流向洋中脊并发生减压部分熔融, 导致不相容元素的高度亏损, 但由于放射成因元素(Sm、Rb和U)的半衰期相对较长, 同位素成分则难以在较短时间内被改变, 因此本文推测沙茨基海隆同位素富集的N-MORB拉斑玄武岩可能是地幔柱-洋中脊相互作用的产物。

  相似文献   

4.
Temperatures and H2O contents of low-MgO high-alumina basalts   总被引:1,自引:1,他引:1  
Experimental evidence is used to estimate H2O contents in low-MgO high-alumina basalts (HABs) (<6 wt.% MgO) and basaltic andesites (BAs) (<5 wt.% MgO) that occur worldwide in magmatic arcs. Wholerock compositions of low-MgO HABs and BAs, phenocryst assemblages, and mineral chemistry match the compositions of liquids, phase assemblages, and mineral-compositions produced in H2O-saturated melting experiments on HABs at moderate pressure (1–2 kb). Low-MgO HABs and BAs therefore could have existed as H2O-rich multiply-saturated liquids within the crust. Results are presented for melting experiments on two HABs and an andesite at 1 kb pressure, H2O-saturated, with fO2 at the NNO buffer. These data and other experimental results on HABs are used to develop a method to estimate the temperature and H2O content of HAB or BA liquids saturated with olivine, plagioclase, and either high-Ca pyroxene or hornblende. Estimated H2O contents of HAB liquids are variable and range from 1 to 8 wt.%. High-MgO HABs (>8wt.% MgO) could have H2O contents reaching no more than 1–2wt.%. The more common low-MgO HABs could have existed as liquids within the crust with H2O contents of 4 wt.% or higher at temperatures<1100°C. Magmas with these high H2O contents will saturate with and exsolve aqueous fluid upon approaching the surface. They cannot erupt as liquids and must grow crystals at shallow depths, thus accounting for the abundant phenocrysts in low-MgO HABs and BAs.  相似文献   

5.
MORB suites display variations in their chemical differentiation trends which are closely related to the incompatible element enrichment of the basalts. We examine suites of primitive to evolved basalts from the Pacific-Nazca Ridge at 28° S (mostly depleted); from the Juan Fernandez microplate region (depleted) and from the Explorer Ridge, northeast Pacific (mostly enriched). Trends for incompatible element enriched MORBs consistently show less depletion of Al2O3 and less enrichment of FeO when plotted on MgO variation diagrams.Least squares modeling indicates that enriched basalts have undergone less plagioclase crystallization than depleted basalts especially in the early stages of differentiation. Using thermodynamic modelling, we show that variations between MORB differentiation trends result largely from differences in the major element chemistry and H2O content of primary magmas. Our chosen enriched and depleted near-primary magmas are similar in major element chemistry but the enriched near-primary magma has higher H2O and lower Al2O3 than the depleted near-primary magma. The MORB crystallization sequence is: olivineolivine+plagioclase olivine+plagioclase+high-Ca pyroxene; and the separate and combined effects of lower Al2O3 and higher H2O are to cause plagioclase to crystallize later (lower temperature), and to make the interval of olivine+plagioclase crystallization shorter. As a result, enriched differentiates have higher Al2O3 and lower FeO than depleted MORBs at a given MgO content, even though their parents' Al2O3 is lower. Crystallization of enriched basalts at higher pressure than depleted basalts is not able to account for differences between the differentiation trends because the proportion of plagioclase is higher during three-phase crystallization at high pressure.The variations in trends do not depend on geographic location and thus are superimposed on any regional variations in MORB chemistry or mantle source. Nor are they related to spreading rate. Depleted basalts from the fast-spreading 28° S and Juan Fernandez ridges have differentiation trends similar to depleted basalts from the medium-spreading Galapagos Spreading Center, whereas differentiation trends for enriched basalts from the medium-spreading Explorer Ridge are quite different. Fe3+/Fetotal is similar (and quite low) for enriched and depleted basalts, indicating that neither oxidation state nor early magnetite crystallization are important.  相似文献   

6.
We compiled a database containing more than 480000 determinations for 73 elements in melt inclusions in minerals and quenched glasses of volcanic rocks. These data were used to estimate the mean contents of major, volatile, and trace elements in igneous melts from main geodynamic settings. The following settings were distinguished: (I) oceanic spreading zones (mid-ocean ridges); (II) zones of mantle plume activity on oceanic plates (oceanic islands and plateaus); (III) and (IV) settings related to subduction processes, including (III) zones of island-arc magmatism generated on the oceanic crust and (IV) magmatic zones of active continental margins involving the continental crust into magma generation processes; (V) intracontinental rifts and continental hot spots; and (VI) back-arc spreading centers. The histogram of SiO2 contents in the natural igneous melts of all geodynamic settings exhibits a bimodal distribution with two maxima at SiO2 contents of 50–52 wt % and 72–74 wt %. The range 62–64 wt % SiO2 comprises the minimum number of determinations. Primitive mantle-normalized spidergrams were constructed for average contents of elements in the igneous melts of basic, intermediate, and acidic compositions from settings I–V. The diagrams reflect the characteristic features of melt compositions for each geodynamic setting. On the basis of the analysis of data on the composition of melt inclusions and glasses of rocks, average ratios of incompatible trace and volatile components (H2O/Ce, K2O/Cl, Nb/U, Ba/Rb, Ce/Pb, etc.) were estimated for the igneous melts of all of the settings. Variations of these ratios were determined, and it was shown that, in most cases, the ratios of incompatible elements are significantly different between settings. The difference is especially pronounced for the ratios of elements with different degrees of incompatibility (e.g., Nb/Yb) and for some ratios with volatile components (e.g., K2O/H2O).  相似文献   

7.
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Based on the generalization of data on melt inclusions and quenched glasses, the average compositions of subduction (island arc and active continental margin settings) basic magmas were estimated. The main geochemical features of the average composition of these magmas are significant depletion in Nb and Ta, less significant depletion in Ti, Zr, and Sm, and enrichment in Cl, H2O, F, and P in the primitive mantlenormalized patterns. The average normalized contents of moderately incompatible HREE in these magmas are close to those in the basic magmas of other geodynamic settings. Subduction basic magmas exhibit negative correlation of Li, Y, Dy, Er, Yb, Lu, and Ti contents with MgO content. Most of incompatible elements (Nb, Ta, U, Th, LREE) do not correlate with MgO, but correlate with each other and K2O. Variations in element contents are related to crystallization differentiation, magma mixing, and possibly, participation of several sources. The water content in the island arc basic magmas varies from almost zero value to more than 6 wt %. Most compositions are characterized by weak negative correlation between H2O and MgO contents, but some compositions define a negative correlation close to that in magmas of mid-ocean ridges (MOR). Considered magmas demonstrate distinct positive correlation between MgO content and homogenization temperature, practically coinciding with that of MOR magmas. Modeling of phase equilibria revealed widening of crystallization field of olivine in the magmas of subduction zones compared to MOR magmas. This can be related to the high water content in subduction magmas. Simultaneous liquidus crystallization of olivine and clinopyroxene in subduction magmas occurs at pressure approximately 5 kbar higher than that of MOR magmas. Based on the average ratios of trace element to K2O content, we determined the average compositions for subduction magma sources. Relative to depleted mantle, they are enriched in all incompatible elements, with positive anomalies of U, Rb, Ba, B, Pb, Cl, H2O, F, and S, and negative anomalies of Th, K, Be, Nb, Ta, Li, Nd, Pb, and Ti. A general elevated content of incompatible elements indicates a reworking of the rocks of mantle wedge by fluids and melts that were released from the upper layers of subducted plate.  相似文献   

9.
Statistical analysis of a data bank of the compositions of glasses and melt inclusions in minerals from ocean-island basalts. The initial database contains more than 45 000 published analyses of ocean-island igneous rocks from around the world. Much attention was given to the contents of volatiles (H2O, Cl, F, and S) and their ratios to one another and to nonvolatile components of close incompatibility (Ti, P, K, and Ce). The average compositions of melt inclusions are similar to those of glasses of the rocks, including volatiles, with consideration for a somewhat higher degree (by approximately 20%) of the differentiation of glasses. The average compositions of ocean-island melts differ from those of mid-ocean basalts in having wider variations and elevated contents of some of the most incompatible elements (Sr, Nb, Ta, Ba, U, Th, and others), as well as H2O, F, and Cl. Based on the correlation of volatiles to one another and to incompatible elements, three groups of ocean-island basalts are distinguished: (I) low-K, P, Ti magma compositions approximating mid-ocean ridge magmas, (II) high-K, Ce, P, and Ti magmas that resemble continental rift magmas but differ from them in low H2O content, and (III) high-K, H2O, Ce, P, and Ti magmas close to continental rift magma. All three types of the melts were found only in the Hawaiian Archipelago, whereas other ocean islands are dominated by any one of these types. The distinguished melt types presumably reflect the differences (heterogeneity) in the compositions of the sources.  相似文献   

10.
11.
Glass (melt) inclusions in quartz, plagioclase and K-feldspar phenocrysts in Toba Tuff ignimbrites all exhibit highly evolved, rhyolitic compositions, identical to glass forming the matrix of the rocks. About 4% H2O is present, dissolved in the glass, suggesting a water saturation pressure ( \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) of about 1 kbar. Melt compositions are consistent with phase relations for the condition \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) =P total = 1 kbar. The residual rhyolitic melt formed as the result of fractional crystallisation from a more basic, possibly rhyodacitic melt, leading to the development of zoned feldspars. Water saturation in the melt probably arose as a result of this process. Melt temperatures prior to eruption and quenching were probably less than 800° C. However, hot-stage homogenisation experiments yield entrapment temperatures significantly higher (>900° C). This discrepancy is not clearly understood but indicates care must be taken in the interpretation of such experiments. Ignimbritic magmas at Toba, from pressure estimates, appear to have been erupted from about 3–4 kms depth and represent the silicic cap to a batholithic body consolidating beneath the Toba caldera.  相似文献   

12.
Isobaric (200 MPa) experiments have been performed to investigate the effects of H2O alone or in combination with P, S, F or Cl on liquid-phase separation in melts in the systems Fe2SiO4–Fe3O4–KAlSi2O6–SiO2, Fe3O4–KAlSi2O6–SiO2 and Fe3O4–Fe2O3–KAlSi2O6–SiO2 with or without plagioclase (An50). Experiments were heated in a rapid-quench internally heated pressure vessel at 1,075, 1,150 or 1,200 °C for 2 h. Experimental fO2 was maintained at QFM, NNO or MH oxygen buffers. H2O alone or in combination with P, S or F increases the temperature and composition range of two-liquid fields at fO2 = NNO and MH buffers. P, S, F and Cl partition preferentially into the Fe-rich immiscible liquid. Two-liquid partition coefficients for Fe, Si, P and S correlate well with the degree of polymerization of the SiO2-rich liquid and plot on similar but distinct power-law curves compared with equivalent anhydrous or basaltic melts. The addition of 2 wt% S to the system Fe3O4–Fe2O3–KAlSi2O6–SiO2 stabilizes three immiscible melts with Fe-, FeS- and Si-rich compositions. H2O-induced suppression of liquidus temperatures in the experimental systems, considered with the effects of pressure on the temperature and composition ranges of two-liquid fields in silicate melts, suggests that liquid-phase separation may be stable in some H2O-rich silicate magmas at pressures in excess of 200 MPa.  相似文献   

13.
Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt   总被引:2,自引:0,他引:2  
Fluid/melt distribution coefficients for F have been determined in experiments conducted with peraluminous topaz rhyolite melts and fluids consisting of H2O and H2O+CO2 at pressures of 0.5 to 5 kbar, temperatures of 775°–1000°C, and concentrations of F in the melt ranging from 0.5 to 6.9 wt%. The major element, F, and Cl concentrations of the starting material and run product glasses were determined by electron microprobe, and the concentration of F in the fluid was calculated by mass balance. The H2O concentrations of some run product glasses were determined by ion microprobe (SIMS). The solubility of melt in the fluid phase increases with increasing F in the system; the solubility of H2O in the melt is independent of the F concentration of the system with up to 6.3 wt% F in the melt. No evidence of immiscible silica- and fluoriderich liquids was detected in the hydrous but water-undersaturated starting material glasses (8.5 wt% F in melt) or in the water-saturated run product glasses. F concentrates in topaz rhyolite melts relative to coexisting fluids at most conditions studied; however, DF (wt% F in fluid/wt% F in melt) increases strongly with increasing F in the system. Maximum values of DF in this study are significantly larger than those previously reported in the literature. Linear extrapolation of the data suggests that DF is greater than one for water-saturated, peraluminous granitic melts containing 8 wt% F at 800° C and 2 kbar. DF increases as temperature and as (H2O/H2O+CO2) of the fluid increase. For topaz rhyolite melts containing 1 wt% F and with H2O-rich fluids, DF is independent of changes in pressure from 2 to 5 kbar at 800° C; for melts containing 1 wt% F and in equilibrium with CO2-bearing fluids the concentrations of F in fluid increases with increasing pressure. F-and lithophile element-enriched granites may evolve to compositions containing extreme concentrations of F during the final stages of crystallization. If F in the melt exceeds 8 wt%, DF is greater than one and the associated magmatic-hydrothermal fluid contains >4 molal F. Such F-enriched fluids may be important in the mass transport of ore constituents, i.e., F, Mo, W, Sn, Li, Be, Rb, Cs, U, Th, Nb, Ta, and B, from the magma.  相似文献   

14.
18O/16O, 34S/32S, and D/H ratios as well as vacuum-fusion H2O+ contents were measured for late Tertiary volcanic basaltic rocks ranging in composition from quartz tholeiites and alkali olivine basalts to melilite-bearing olivine nephelinites and for peridotite xenoliths from the Northern Hessian Depression of W.-Germany. Measured Oisotope ratios in both basalts and peridotites were corrected for variable degree of post-eruption, secondary alteration. The ranges and means of corrected 18O values ( SMOW) for the North Hessian lavas and peridotites are: (i) 8 tholeiites: ca. +6.1 to +7.3 (¯x=+6.6), (ii) 21 alkali olivine basalts: ca. +5.4 to +7.6 (¯x=+6.5), (iii) 19 nepheline basanites, limburgites, and olivine nephelinites: ca. +5.3 to +8.0 (¯x=+6.6), and (iv) 23 peridotites: +5.1 to 7.0 (¯x+6.0). The 34S values ( CDT) for the tholeiites range from –0.6 to +1.4 (¯x=–0.03) and for the alkali basalts range from +0.9 to +8.6 (¯x=+2.5). The approximate D value ( SMOW) of the pristine basalts and peridotites is estimated to have been ca. –90The quartz tholeiites appear to have had a different genetic history than the alkali basalts. Supported by chemical evidence, the 18O and 87Sr enrichment observed in the tholeiites suggests low crustal contamination of parental olivine tholeiite melts, derived from a depleted mantle source. The contamination by crustal partial melts may have occurred in granulitic lower crust during differentiation. By contrast the high 18O and 34S values observed for the alkali basalts and peridotites are best explained in terms of metasomatic alteration of the mantle source region by fluids enriched in 18O, K, and incompatible trace elements prior to partial melting. The 18O-K relationships for the peridotites indicate that the mantle beneath the Northern Hessian Depression has had a complex stable isotope history involving at least two distinct metasomatic events. The earlier event involved a CO2-rich fluid which modified 18O/16O ratios without altering the mineralogical character of the mantle peridotite. The second event involved an aqueous fluid, which mainly altered the clinopyroxene and introduced phlogopite (plus possibly apatite, carbonate, and amphibole). It superimposed an 18O and K enrichment upon a previously altered mantle.  相似文献   

15.
We present major element, trace element, and volatile concentrations from 66 naturally glassy, olivine-hosted melt inclusions erupted along the Eastern Volcanic Zone (EVZ) of the ultraslow-spreading Gakkel Ridge. Melt inclusion compositions suggest that there are systematic variations in the mantle source composition and melting dynamics from the eastern to the western end of the EVZ. This includes increasing water contents and highly incompatible trace element concentrations (e.g., Ba and Nb) and decreasing light and middle rare earth element concentrations. Ratios of light to heavy rare earth elements in the easternmost melt inclusions are relatively homogeneous, but become more variable to the west. To determine the source of the geochemical variability observed along the EVZ, we model trace elements associated with mantle melting in one- and two-component systems. We consider four possible mantle sources and a range of melting regime shapes, from a full melting triangle to a vertical melting column centered beneath the ridge axes. The observed geochemical variations can be explained by melting of a heterogeneous mantle source composed of depleted MORB mantle plus a metasomatized mantle, where the proportion of the metasomatized component and the extent of melting increases toward the west. Lower rare earth element concentrations and trace element ratios in the westernmost sites also suggest inefficient melt focusing from the outer edges of the melting region. Our results indicate that despite variations in the size of the melting zone and the composition of the mantle source along the ridge axis, the region over which the melts are pooled back to the ridge axis is relatively constant (~10–20 km), suggesting that there is a limit to the distance melts can be transported from off-axis in ultraslow-spreading environments.  相似文献   

16.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

17.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

18.
We present data on volatile (S, F and Cl) and major element contents in olivine-hosted melt inclusions (MIs) from alkaline basaltic tephras along the Quaternary Payenia backarc volcanic province (~34°S–38°S) of the Andean Southern Volcanic Zone (SVZ). The composition of Cr-spinel inclusions and host olivines in Payenia are also included to constrain any variations in oxygen fugacity. The variation of potassium, fluorine and chlorine in MIs in Payenia can be modelled by partial melting (1–10%) of a variously metasomatised mantle. The high chlorine contents in MIs (up to 3200 ppm) from Northern Payenia require addition of subduction-related fluids to a mantle wedge, whereas volatile signatures in the southern Payenia are consistent with derivation from an enriched OIB source. Cl and Cl/K ratios define positive correlations with host olivine fosterite content (Fo80-90) that cannot be explained by olivine fractionation, degassing and/or degree of mantle melting. Neither can the correlation between SiO2 and TiO2 in the MIs and host olivine Fo-content be explained by magmatic differentiation processes. Instead these correlations essentially require a south to north mantle source transition from a low Mg# pyroxenite (from recycled eclogite) to a high Mg# fluid metasomatised peridotite. The Cl/K and S/K ratios in Payenia MIs extend from enriched OIB-like signatures (south) to Andean SVZ arc like signatures (north). We show that the northward increase in S, Cl and S/K is coupled to a northward increase in melt oxidation states and thus in Fe3+/Fetot ratios in the magmas. The increase in oxidation state also correlates with an increase of Mn/Fe (olivine) ratios. We calculate that 25% of the apparent north–south pyroxenite–peridotite source variation in Payenia (based on olivine Mn/Fe ratios) can be explained by the south to north variation in melt oxidation states.  相似文献   

19.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   

20.
ABSTRACT

The lithospheric mantle beneath the South China Block (SCB) underwent a dramatic transformation from depleted to enriched during late Mesozoic. With a view to deeply understand this process, here we investigate the Mesozoic basalts and their melt inclusions from the Daoxian and Ningyuan regions within the central SCB. The geochemical features of the melt inclusions in these basalts suggest that these rocks originated from the lithospheric mantle enriched through interaction with K-rich aqueous fluids released from subducted Palaeo-Pacific oceanic sediments, whereas the Ningyuan basalts were mainly derived from the asthenospheric mantle source. Geochemical modelling indicates that the Daoxian basalts were generated from 15%-25% of partial melting of garnet lherzolite, whereas the Ningyuan basalts originated from 10%-20% of partial melting of garnet pyroxenites. Our data, combined with those from other Jurassic basalts suggest a temporal evolution of the SCB mantle sources during the Late Mesozoic. Diverse crust–mantle interactions through mixing of the asthenospheric melts with variable proportions of subducted Palaeo-Pacific oceanic sediments might account for the spatial heterogeneity of mantle sources observed beneath the SCB. The transition from Tethyan tectonic realm to the Palaeo-Pacific tectonic regime might have played a significant role in the transformation of the lithospheric mantle beneath the SCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号