首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We develop a Monte Carlo technique based on L.B. Lucy's indivisible photon packets method to calculate X-ray continuum spectra of Comptonized thermal plasma in arbitrary geometry and apply it to describe the broad-band X-ray continuum of the galactic superaccreting microquasar SS433 observed by INTEGRAL . A physical model of the X-ray emitting region is proposed that includes thermal emission from the accretion disc, jets and hot corona where the photons of different origin are Comptonized. From comparison with INTEGRAL observations, we estimate physical parameters of the complex X-ray emitting region in SS433 and present model spectra for different viewing angles of the object.  相似文献   

3.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

4.
5.
6.
7.
We present new spectral (FPI and long‐slit) data on the Eastern optical filament of the well known radionebula W50 associated with SS433. We find that on sub‐parsec scales different emission lines are emitted by different regions with evidently different physical conditions. Kinematical properties of the ionized gas show evidence for moderately high (V ∼ 100 km s–1) supersonic motions. [O III]λ 5007 emission is found to be multi‐component and differs from lowerexcitation [S II]λ 6717 line both in spatial and kinematical properties. Indirect evidence for very low characteristic densities of the gas (n ∼ 0.1 cm–3) is found. We propose radiative (possibly incomplete) shock waves in low‐density, moderately high metallicity gas as the most probable candidate for the power source of the optical filament. Apparent nitrogen overabundance is better understood if the location of W50 in the Galaxy is taken into account (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present results of VLBA observations of SS433 at two epochs at 5, 8.4, and 15 GHz. The AU-scale region of the source is resolved and shows the familiar quasi-symmetric core-jet structures. But at another epoch, the maps show bright knots ejected a few days before the observation, while the core-complex disappeared. The bright jet components are completely depolarised with fractional polarization less than 0.5%. We also present the first VLBI image of SS433 at 22 GHz.  相似文献   

9.
《Astroparticle Physics》2009,32(2):112-119
SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and west. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate VHE gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect VHE gamma rays using the 10 m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 h for ON source, and 80.8 h for OFF source data. No significant excess of VHE gamma rays has been found at three regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are G for the center of the brightest X-ray emission region and G for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.  相似文献   

10.
11.
12.
We present time–resolved optical spectroscopy of the famous X-ray binary SS 433. We obtained 61 medium resolution spectra spread over three months and thus cover roughly five orbits and about half a precession phase. We used various emission lines, that we attribute to the accretion disc, to determine the radial velocities of the compact component. They are of course modulated with the orbital period but in addition show a variation of the system velocity on a longer time scale. With the present data it is not possible to determine whether this is a transient effect or a periodic variation, although we present various possible interpretations of this effect.  相似文献   

13.
SS433是银河系内一个著名的高能天体,W50是它周围的超新星遗迹,自20世纪70年代末SS433的运动模型建立以来,已经受到了越来越多的关注,取得了丰富的多波段观测资料。但是,直到现在,关于这一系统的一些基本性质和参数还存在相当大的争论。该文介绍了关于SS433研究的某些新进展,主要包括SS433的运动模型和喷流的膨胀冷却模型,SS433的物质损失,各种时标的光变和喷流的结构,并对关于SS433研究的热点问题作了总结与展望。  相似文献   

14.
15.
16.
17.
18.
The structure of the SS 433 supercritical accretion disk derived from spectral and photometric data is described. In the disk plane, gas outflows at a velocity of about 100-150 km/s, while above the disk plane, the velocity increases sharply and reaches 1500 km/s at polar angle 60°. The outer parts of the accretion disk are involved in the precessional motion, which means that the slaved disk precession model is correct. There is complex periodic variability in the radial velocities of SS 433. Apart from the well-known precessional and orbital variability, the strongest cycle is 1/7 of the precession period, P7 = 23.228 ± 0.005 days. This is interpreted as evidence for a spiral shock in the accretion disk. The He II 4686 line consists of two components: a stream-formed narrow Gaussian profile and a broad double-peaked one. The latter is completely eclipsed at phase 0.0. Its blue and red peaks are probably emitted in gaseous cocoons around the bases of the relativistic jets. A correct value of the mass function has been found, which shows that the optical star is massive. The relativistic star's mass is estimated to be Mx 6M.  相似文献   

19.
We here investigate the dispersion properties of radiation in the SS433 relativistic jets. We assume that the jet is composed of cold electron-proton plasma immersed in a predominantly parallel magnetic field to the jet axis. We find that for the mildly relativistic source SS433 (for which 〈ψ〉≃79°), the bulk velocity is too small (v≃0.26c) to produce significant changes in the dispersion properties of the medium. Nonetheless, in the rarefied outer regions of the jets, where radio emission dominates, even a weak magnetic field has some influence on the dispersion properties and there appear two different electromagnetic branches that are slightly sensitive to the bulk relativistic motion. In the inner, X-ray region, the magnetic field is much stronger, but in this region the high electron density preserves the isotropic character of the local plasma and no branch separation occurs. In the region of the jet where the IR and optical emission dominates, the cold plasma may be also considered isotropic, i.e., neither the magnetic field nor the bulk velocity is able to affect the propagation of the radiation. Finally, we find that the Doppler line displacement in SS433 is affected by plasma dispersion only in a narrow frequency range in the far IR. As a consequence, although the shift (z) modulation due to precession of the SS433 jets is well described by previous work, it has to be corrected by plasma dispersion effects in the far-IR range.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号