首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
随着气候变化影响加剧,全球气候治理进程加速,实现碳达峰已经成为全球气候行动的核心,各国也相继制定碳中和目标并开展行动。中国在第75届联合国大会一般性辩论上提出了碳达峰碳中和目标,部分已实现碳达峰的发达经济体也提出了各自的碳中和承诺。文中从“整体-阶段”及“焦点-公平”视角分析了欧盟和美国等主要发达经济体碳达峰的历程和特点,以及其碳中和目标和规划。研究发现,发达经济体在碳达峰过程中普遍经历了较长的爬坡期(58~136年)和平台期(4~20年),在碳达峰时,发达经济体的能源结构以油气为主,油气占一次能源消费比重为57%~77%,其人均排放量、历史累计排放以及人均GDP也都处于较高水平,在碳达峰前后总体处于经济与碳排放脱钩状态。各发达经济体的碳中和路径均以能源转型为重点,采用了多元化的政策工具,并且注重低碳和负碳技术的革新。根据发达经济体的政策展望,在实现碳中和时,均难以将绝对排放量降为零,都需要通过碳移除手段进行抵消。通过对比分析,发现中国的碳达峰和碳中和目标是具有雄心的气候承诺,相较其他发达经济体需要付出更大努力。建议运用全面综合的政策工具支撑碳中和目标的有效落实,加快中国的气候立法,在兼顾公正转型的同时推动能源结构调整,注重可再生能源和能效方面的新技术开发应用。  相似文献   

2.
3.
4.
Biological activities that sequester carbon create CO2 offset credits that could obviate the need for reductions in fossil fuel use. Credits are earned by storing carbon in terrestrial ecosystems and wood products, although CO2 emissions are also mitigated by delaying deforestation, which accounts for one-quarter of anthropogenic CO2 emissions. However, non-permanent carbon offsets from biological activities are difficult to compare with each other and with emissions reduction because they differ in how long they prevent CO2 from entering the atmosphere. This is the duration problem. It results in uncertainty and makes it hard to determine the legitimacy of biological activities in mitigating climate change. Measuring, verifying and monitoring the carbon sequestered in sinks greatly increases transaction costs and leads to rent seeking by sellers of dubious sink credits. While biological sink activities undoubtedly help mitigate climate change and should not be neglected, it is shown that there are limits to the substitutability between temporary offset credits from these activities and emissions reduction, and that this has implications for carbon trading. A possible solution to inherent incommensurability between temporary and permanent credits is also suggested.  相似文献   

5.
We set out a dynamic model to investigate optimal time paths of emissions, carbon stocks and carbon sequestration by land conversion, allowing for non-instantaneous carbon sequestration. Previous research in a dynamic general equilibrium framework, assuming instantaneous carbon sequestration, has shown that land conversion should take place as soon as possible. On the contrary, previous research within a partial equilibrium framework has shown that, with increasing carbon prices, it is optimal to delay carbon sequestration through land conversion. We show that land use change alternatives, e.g. reforestation, have to be used as soon as possible before the singular path is reached, i.e. the unique trajectory that brings the system to the steady-state. We also show that faster increasing carbon prices can induce a reduction in the rate of reforestation, and that this may take place after an initial phase of increased reforestations or even immediately, depending upon the shape of the increase in carbon prices. Finally, we show that the type of species used is relevant and that the land conversion rate gets smaller the longer it takes the trees to grow. We analyze four different carbon accounting methods, describing the conditions that make them efficient and discussing the comparative advantages of each of them.  相似文献   

6.
Humans utilise about 40% of the earth’s net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other significant anthropogenic impacts on the global carbon cycle include human utilization of fossil fuels and impacts on less intensively managed systems such as peatlands, wetlands and permafrost. A great deal of knowledge, expertise and data is available within each sector. We describe the contribution of sectoral carbon budgets to our understanding of the global carbon cycle. Whilst many sectors exhibit similarities for carbon budgeting, some key differences arise due to differences in goods and services provided, ecology, management practices used, land-management personnel responsible, policies affecting land management, data types and availability, and the drivers of change. We review the methods and data sources available for assessing sectoral carbon budgets, and describe some of key data limitations and uncertainties for each sector in different regions of the world. We identify the main gaps in our knowledge/data, show that coverage is better for the developed world for most sectors, and suggest how sectoral carbon budgets could be improved in the future. Research priorities include the development of shared protocols through site networks, a move to full carbon accounting within sectors, and the assessment of full greenhouse gas budgets.  相似文献   

7.
IPCC AR6报告中控温1.5℃和2℃的低排放情景需要在21世纪中叶以后实现净负CO2排放,这需要在很大程度上依赖CO2移除措施。AR6对CO2移除的主要评估结论如下:CO2移除有潜力从大气中去除CO2(高信度);如果CO2移除量超过CO2排放量,将实现净负CO2排放,降低大气CO2浓度,减缓海洋酸化(高信度);通过CO2移除方法从大气中去除的CO2会部分被海洋和陆地释放的CO2抵消(非常高信度);如果净负CO2排放可以实现并且持续,CO2引起的全球升温趋势将会逐渐扭转,但是气候系统的其他变化(例如海平面升高)仍会在未来的几十年到千年尺度上持续(高信度);不同CO2移除方法会对生物化学循环和气候产生广泛的影响,这些影响会加强或减弱CO2移除的降温潜力,并且影响水资源、食物生产和生物多样性(高信度)。  相似文献   

8.
9.
碳中和是指人类活动造成的碳排放与全球人为碳吸收量在一定时期内达到平衡,也称为净零排放 [1].《巴黎协定》第四条提出采取减排增汇措施以实现21世纪后半叶人为温室气体排放量与汇的清除量达到平衡 [2].越来越多的国家正将其转化为战略和行动,目前已有100多个国家提出碳中和目标承诺,并明确了碳中和时间表.2020年9月第7...  相似文献   

10.
The time-dependent response of climate changes to changing atmospheric concentration of carbon dioxide is modeled using an energy balance atmospheric model coupled to a one-dimensional upwelling diffusion model of the deep ocean. Such a model introduces time delays so that the calculated globally-averaged temperature lags that which would be predicted by assuming radiative equilibrium. The climate model is coupled to a simple carbon cycle model and a ‘social’ model that simulates decreasing emission in response to increasing global temperatures. The thermal inertia of the system is such that temperatures continue to increase after carbon dioxide concentrations are decreasing. Consultant to BNL from New York University. Semester Student, Fall 1979, Alcorn State College. This research was performed under the auspices of the United States Department of Energy under Contract No. DE-AC02-76CH00016. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government’s right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.  相似文献   

11.
Ecological limits to terrestrial biological carbon dioxide removal   总被引:1,自引:1,他引:0  
Terrestrial biological atmospheric carbon dioxide removal (BCDR) through bioenergy with carbon capture and storage (BECS), afforestation/reforestation, and forest and soil management is a family of proposed climate change mitigation strategies. Very high sequestration potentials for these strategies have been reported, but there has been no systematic analysis of the potential ecological limits to and environmental impacts of implementation at the scale relevant to climate change mitigation. In this analysis, we identified site-specific aspects of land, water, nutrients, and habitat that will affect local project-scale carbon sequestration and ecological impacts. Using this framework, we estimated global-scale land and resource requirements for BCDR, implemented at a rate of 1 Pg C y?1. We estimate that removing 1 Pg C y?1 via tropical afforestation would require at least 7?×?106 ha y?1 of land, 0.09 Tg y?1 of nitrogen, and 0.2 Tg y?1 of phosphorous, and would increase evapotranspiration from those lands by almost 50 %. Switchgrass BECS would require at least 2?×?108 ha of land (20 times U.S. area currently under bioethanol production) and 20 Tg y?1 of nitrogen (20 % of global fertilizer nitrogen production), consuming 4?×?1012?m3 y?1 of water. While BCDR promises some direct (climate) and ancillary (restoration, habitat protection) benefits, Pg C-scale implementation may be constrained by ecological factors, and may compromise the ultimate goals of climate change mitigation.  相似文献   

12.
13.
Many actions to reduce GHG emissions have wider impacts on health, the economy, and the environment, beyond their role in mitigating climate change. These ancillary impacts can be positive (co-benefits) or negative (conflicts). This article presents the first quantitative review of the wider impacts on health and the environment likely to arise from action to meet the UK's legally-binding carbon budgets. Impacts were assessed for climate measures directed at power generation, energy use in buildings, and industry, transport, and agriculture. The study considered a wide range of health and environmental impacts including air pollution, noise, the upstream impacts of fuel extraction, and the lifestyle benefits of active travel. It was not possible to quantify all impacts, but for those that were monetized the co-benefits of climate action (i.e. excluding climate benefits) significantly outweigh the negative impacts, with a net present value of more than £85 billion from 2008 to 2030. Substantial benefits arise from reduced congestion, pollution, noise, and road accidents as a result of avoided journeys. There is also a large health benefit as a result of increased exercise from walking and cycling instead of driving. Awareness of these benefits could strengthen the case for more ambitious climate mitigation action.

Policy relevance

This article demonstrates that actions to mitigate GHG emissions have significant wider benefits for health and the environment. Including these impacts in cost–benefit analysis would strengthen the case for the UK (and similar countries) to set ambitious emissions reduction targets. Understanding co-benefits and trade-offs will also improve coordination across policy areas and cut costs. In addition, co-benefits such as air quality improvements are often immediate and local, whereas climate benefits may occur on a longer timescale and mainly in a distant region, as well as being harder to demonstrate. Dissemination of the benefits, along with better anticipation of trade-offs, could therefore boost public support for climate action.  相似文献   


14.
Alex Y. Lo 《Climate Policy》2016,16(1):109-124
China has introduced several pilot emission trading schemes to build the basis for a national scheme. The potential scale of this initiative raises prospects for a regional carbon trading network as a way to further engage other major Asian economies. However, the Chinese carbon markets rest upon a unique political-economic context and institutional environment that are likely to limit their development and viability. This article offers an overview of such structural economic and political constraints. Four main challenges are identified, namely, inadequate domestic demand, limited financial involvement, incomplete regulatory infrastructure, and excessive government intervention. The first two challenges concern economic dimensions and may be partially addressed by the incentives created by the newly introduced emission trading schemes. The other two are more deeply entrenched in the dominant political system and governing practice. They require fundamental changes to the ways in which the state and the market interact. The success of China's carbon market reform depends crucially on the ability of the ongoing efforts to transform the distorted state–market relationship.

Policy relevance

The burgeoning carbon markets offer opportunities for emissions mitigation at lower costs and enable circulation of a new form of capital, i.e. carbon credits, across borders. China accounts for a gigantic share of global GHG emissions and has the potential to significantly scale up these opportunities. There are clear implications for market developers and participants worldwide, including climate policy makers who attempt to link their emission trading schemes to other schemes, firms who seek to take advantage of the inexpensive carbon offsets generated in developing countries, international financial institutions who endeavour to establish their business in an emerging major carbon market, etc. This article can inform their decisions by identifying key issues that may undermine their ability to achieve these goals. Policy makers and stakeholders will benefit from this analysis, which shows how the Chinese carbon markets operate in ways that may be different from their experience elsewhere.  相似文献   


15.
Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide   总被引:1,自引:0,他引:1  
The possibility of controlling atmospheric carbon dioxide accumulation and attendant climatic effects from fossil-fuel burning by diverting a fraction of the combustion product and injecting it into the deep-ocean, as proposed by Marchetti, is analyzed using an atmosphere/mixed layer/diffusive deep-ocean model for the carbon cycle. The model includes the nonlinear buffering of CO2 at the air/sea interface, and considers the long term trends associated with consuming an assumed fossil-fuel reserve equivalent to 7.09 × 1015 kg carbon as a logistic function of time as in the projections of Siegenthaler and Oeschger, except that atmospheric carbon dioxide levels are computed for five alternate strategies: (a) 100% injected into atmosphere, (b) 50% injected at oceanic depth of 1500 m and 50% into atmosphere, (c) 50% injected at sea floor (4000 m) and 50% into atmosphere, (d) 100% at 1500 m depth and (e) 100% at sea floor. Since no carbon leaves the system, all runs approached the same post-fossil fuel equilibrium after several thousand years, C a - 1150 ppm, almost four times the pre-fossil fuel value (- 300 ppm). But the transient response of these cases showed a marked variation ranging from a peak overshoot value of 2800 ppm in the year 2130 for 100% atmospheric injection to a slight decrease to the pre-fossil fuel 300 ppm lasting till 2300 with a subsequent slow approach to equilibrium for the 100% deep-ocean injection. The implications of these results for an oceanic injection strategy to mitigate the climatic impact of fossil-fuel CO2 is discussed, as are the ingredients of a second generation carbon cycle model for carrying out such forecasts on an engineering design basis.  相似文献   

16.
John M. DeCicco 《Climatic change》2012,111(3-4):627-640
Public policy supports biofuels for their benefits to agricultural economies, energy security and the environment. The environmental rationale is premised on greenhouse gas (GHG, “carbon”) emissions reduction, which is a matter of contention. This issue is challenging to resolve because of critical but difficult-to-verify assumptions in lifecycle analysis (LCA), limits of available data and disputes about system boundaries. Although LCA has been the presumptive basis of climate policy for fuels, careful consideration indicates that it is inappropriate for defining regulations. This paper proposes a method using annual basis carbon (ABC) accounting to track the stocks and flows of carbon and other relevant GHGs throughout fuel supply chains. Such an approach makes fuel and feedstock production facilities the focus of accounting while treating the CO2 emissions from fuel end-use at face value regardless of the origin of the fuel carbon (bio- or fossil). Integrated into cap-and-trade policy and including provisions for mitigating indirect land-use change impacts, also evaluated on an annual basis, an ABC approach would provide a sound carbon management framework for the transportation fuels sector.  相似文献   

17.
18.
Abstract

Forestry projects under the Clean Development Mechanism (CDM) face specific challenges with regard to determination of a baseline for carbon sequestration. We propose a semi-standardized approach called PARAPIA for calculation of a baseline that is built on the concept of a reference area around the project area whose land-use characteristics determine the baseline scenario. The land-use shares in the reference area are checked at each verification. Baseline carbon stocks are then derived ex post using the average carbon content of each land-use type. The reference area is between five and ten times larger than the project area. To determine indirect effects (the so-called ‘leakage’), a political influence area such as province or state is assessed with regards to migration flows due to the project and related emissions.  相似文献   

19.
The theoretical potential for carbon forests to off-set greenhouse gas emissions may be high but the achievable rate is influenced by a range of economic and social factors. Economic returns (net present value, NPV) were calculated spatially across the cleared land area in Australia for ‘environmental carbon plantings’. A total of 105 scenarios were run by varying discount rate, carbon price, rate of carbon sequestration and costs for plantation establishment licenses for water interception. The area for which NPV was positive ranged from zero ha for tightly constrained scenarios to almost the whole of the cleared land (104 M ha) for lower discount rate and highest carbon price. For the most plausible assumptions for cost of establishment and commercial discount rate, no areas were identified as profitable until a carbon price of AUD$40 t CO2 ?1 was reached. The many practical constraints to plantation establishment mean that it will likely take decades to have significant impact on emission reductions. Every 1 M ha of carbon forests established would offset about 1.4 % of Australia’s year 2000 emissions (or 7.4 Mt CO2 year?1) when an average rate of sequestration per ha was reached. All studies that predict large areas of potentially profitable land for carbon forestry need to be tempered by the realities that constrain land use change. In Australia and globally, carbon plantings can be a useful activity to help mitigate emissions and restore landscapes but it should be viewed as a long-term project in which co-benefits such as biodiversity enhancement can be realised.  相似文献   

20.
Current standard methods result in significant discrepancies in carbon offset accounting compared to approaches based on representative community based subsamples, which provide more realistic assessments at reasonable cost. Perhaps more critically, neither of the currently approved methods incorporates uncertainties inherent in estimates of emission factors or non-renewable fuel usage (fNRB). Since emission factors and fNRB contribute 25% and 47%, respectively, to the overall uncertainty in offset estimates for Purépecha communities in Mexico, exclusion of this uncertainty is a critical omission. When the recommended uncertainty for default emission factors and the uncertainty associated with regional estimates of fNRB are included the lower 95% confidence intervals of both Clean Development Mechanism and Gold Standard methods exceed the total amount of carbon saved, which would result in zero marketable carbon savings if approaches recommended by the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, or Land use, Land-Use Change and Forestry (LULUCF) are to be followed. In contrast, for the same communities, methods using representative subsamples of emission factors and fuel consumption, combined with community-level fNRB estimates, result in significant carbon offsets with a lower 95% confidence interval of 2.3 tCO2e home???1 year???1. Given the misleading estimates, revision of the currently approved methodologies to provide robust estimates of carbon offsets is strongly recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号