首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654–671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl’s jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.  相似文献   

2.
This paper is a brief summary of recent experimental studies conducted by the WPL staff in order to: (a) compare acoustic echo strengths with those predicted from measured turbulence intensities and scatter theory; (b) develop optimum experimental geometries for Doppler work, and (c) use the acoustic echo-sounder as a quantitative tool in studies of gravity wave dynamics in, and immediately above, the stable planetary boundary layer. We find that the observed acoustic echo strengths are roughly an order of magnitude greater than those predicted theoretically. This discrepancy might be in part due to partial reflection although the comparison is somewhat clouded by uncertainties in our knowledge of the equipment characteristics, propagation losses, etc. Comparisons between Doppler and in situ wind measurements give confidence in the Doppler results, but further experimentation and comparisons are needed. Preliminary use of acoustic Doppler data in a case study of gravity-wave dynamics in the planetary boundary layer has yielded boundary-layer wind speed and direction profiles which give insight into the mechanisms responsible for the wave generation. The Doppler data yield estimates of the wave associated momentum fluxes (a few dyn cm–2) as well. The results derived from the acoustic techniques are quite encouraging, but thus far remain unsubstantiated by independent wind and flux measurements.  相似文献   

3.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered structure of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heights and morning boundary layer development are combined with surface eddy correlation measurements of kinematic heat and moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is presented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed during the transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

4.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urbanarea in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered struc-ture of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heightsand morning boundary layer development are combined with surface eddy correlation measurements of kinematic heatand moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is pres-ented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed duringthe transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

5.
A hydraulic jump has been observed with the airborne backscatter lidar LEANDRE 1 (Lidar embarqué pour l'Etude des Aérosols, des Nuages, des interactions Dynamique-Rayonnement etdu cycle de l'Eau) at the top of the atmospheric boundary layer (ABL) during a Tramontane event in the framework of the Pyréneés experiment. An analytical fluid mechanics model is used to interpret lidar observations in connection with in situ measurements andto study the sensitivity of the hydraulic jump triggering to the boundary conditions. This model, which generalizes the reduced-gravity shallow-water theory for two-dimensional stratified flows over a topograpy, is diagnostic (i.e., the reduced gravity g' = g v v is prescribed) and uses boundary conditions defined in terms of Riemann invariants. Using inflow and outflow boundary conditions as well as the reduced gravity prescribed from in situ measurements, the model is able to diagnose the presence of a hydraulic jump at the location suspected from the lidar observations. The wind speed, ABL height and Froude number derived from the model are in good agreement with the observations (within about 20–30%).  相似文献   

6.
Several two-equation turbulence models using isotropic eddy viscosity and wall functions are assessed by solution of the neutral atmospheric boundary layer over a flat surface and wind flow over two- and three-dimensional models and real terrain. Calculations are presented for wind flow over the Sirhowy Valley in Wales, an embankment along the Rhine in Germany and the Askervein Hill in Scotland. Comparisons of predictions with previous work, and laboratory and field data, show that the RNG-based k– model gives the best agreement with respect to the flow profiles and length of the separated flow region. The results of this model are analyzed with a non-linear stress-strain relation to gauge the potential effect of turbulence anisotropy.  相似文献   

7.
The adaptation of the atmospheric boundary layer to a change in the underlying surface roughness is an interesting problem and hence much research, theoretical, experimental, and numerical, has been undertaken. Within the atmospheric boundary layer an accurate numerical model for the turbulent properties of the atmospheric boundary layer needs to be implemented if physically realistic results are to be obtained. Here, the adaptation of the atmospheric boundary layer to a change in surface roughness is investigated using a first-order turbulence closure model, a one-and-a-half-order turbulence closure model and a second-order turbulence closure model. Perturbations to the geostrophic wind and the pressure gradients are included and it is shown that the second-order turbulence closure model, namely the standard k - model, is inferior to a lower-order closure model if a modification to limit the turbulent eddy size within the atmospheric boundary layer is not included within the model.  相似文献   

8.
A new algebraic turbulent length scale model is developed, based on previous one-equation turbulence modelling experience in atmospheric flow and dispersion calculations. The model is applied to the neutral Ekman layer, as well as to fully-developed pipe and channel flows. For the pipe and channel flows examined the present model results can be considered as nearly equivalent to the results obtained using the standard k– model. For the neutral Ekman layer, the model predicts satisfactorily the near-neutral Cabauw friction velocities and a dependence of the drag coefficient versus Rossby number very close to that derived from published (G. N. Coleman) direct numerical simulations. The model underestimates the Cabauw cross-isobaric angles, but to a less degree than the cross-isobar angle versus Rossby dependence derived from the Coleman simulation. Finally, for the Cabauw data, with a geostrophic wind magnitude of 10 ms–1, the model predicts an eddy diffusivity distribution in good agreement with semi-empirical distributions used in current operational practice.  相似文献   

9.
大气边界层物理与大气环境过程研究进展   总被引:3,自引:2,他引:1  
张美根  胡非  邹捍 《大气科学》2008,32(4):923-934
总结了近5年来中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室(LAPC)在第二代超声风速温度仪研制、城市边界层研究、复杂地形大气边界层探测与数值模拟、湍流机理研究、大气污染模式发展与应用等领域的主要进展,其中,第二代超声风速温度仪的野外对比测试结果表明其主要性能完全达到了国际先进水平;北京城市化发展使得北京325 m气象塔周边近地面流场已经具备了典型城市粗糙下垫面的流场特征,近地面夏季平均风速呈现非常明显的逐年递减趋势;北京沙尘暴大风时期湍流运动主要是小尺度湍涡运动,而大风的概率分布偏离高斯分布,风速较大的一侧概率分布呈指数迅速衰减,大风中风速很大的部分具有分形特征;珠穆朗玛峰北坡地区两次综合强化探测实验是迄今为止在青藏高原大型山地中实施的针对山地环流和物质/能量交换最为全面和连续的大气过程探测实验;白洋淀地区的观测研究表明,非均匀边界层具有一般边界层不具备的特点,无论是边界层结构还是湍流输送方面,水、陆边界层之间存在一定的差异,凸显其地表非均匀性的作用;为了解决不同尺度、不同类型的大气污染问题和实际应用,研制或发展完善了多套大气污染模式系统,包括全球大气化学模式、区域大气污染数值模式、城市大气污染数值模式和微小尺度(如街区尺度)范围内污染物输送扩散模式。  相似文献   

10.
11.
The wind speed shear in the case of stable stratification in the linear part of the profile spreading high above the surface layer of constant flows is studied using the data of long-term sodar measurements in the atmospheric boundary layer. The wind speed shear in this part remains almost invariable during several hours at the significant change in parameters of the Monin-Obukhov theory. The length of this linear part can be associated with the layer of the critical Richardson number. In the case of the pronounced temperature inversion (with the positive gradient of more than 1°C per 100 m), the wind speed profile is close to the linear function in the most part of the nocturnal mixing layer. Proposed is a scale characterizing the height of the surface layer of constant flows.  相似文献   

12.
Analytical and numerical models of the neutral and stably-stratifiedatmospheric boundary layer are reviewed. Theoretical arguments andcomputational models suggest that a quasi-steady state is attainable in aboundary layer cooled from below and it is shown how this may be incorporatedwithin a time-steady, one-dimensional model. A new length-scale-limitedk- model is proposed for flows where a global maximum mixing length isimposed by the finite boundary-layer depth or, in stably-stratifiedconditions, by the Obukhov length, whilst still reducing to a form consistentwith the logarithmic law in the surface layer. Simulations compare favourablywith data from the Leipzig experiment and from Cardington airfield inEngland.  相似文献   

13.
The flows over four two-dimensional triangular hills and three two-dimensional bell-shaped hills have been investigated in a simulated rural atmospheric boundary layer modelled to a scale of 1:300: Further measurements were made over two of the triangular hills in a simulated rural boundary layer of 1: 3000 scale and in a simulated urban boundary layer modelled to a scale of 1:400. The effect of the model hill surface roughness was also investigated. Flow measurements were restricted to the mean velocity U, RMS velocity fluctuations u and the energy spectra for the streamwise velocity component Measurements were made at a number of longitudinal positions in the approach flow, over the model hills and downstream of the model hills. For each model hill, the crest was the region of largest mean velocity and smallest velocity fluctuations. The largest mean velocities over the model hills occurred for hills of intermediate slope rather than for the steepest hills. A decrease in the scale of the simulated atmospheric boundary layer led to a reduction in the amplification factors at the hill crests, whereas an increase in the surface roughness of the approach flow resulted in increased amplification factors at the hill crests.  相似文献   

14.
A diagnostic model is a relatively simple and practical tool for modeling the wind flow of the boundary layer in complex terrain. The model begins with a wind analysis based on available surface wind reports and geostrophic winds (computed from pressure data). The height of the boundary layer top (upper surface of the computational domain) is prescribed to fit local conditions. Using the continuity equation in terrain-following coordinates, the winds at mesh points are adjusted to produce nondivergence while maintaining the original vertical component of vorticity. The method of computing the nondivergent winds uses direct alterations. This method may be useful for other modeling purposes and will be described. Data for a long period (usually a year) are analyzed to obtain eigenvectors and the associated time series of their coefficients at each observation time. The model is run only for the five or six eigenvectors that explain most of the variance. The wind field at any particular time is reconstructed from the eigenvector solutions and their appropriate coefficients. Comparisons of model results with measured winds at sites representing different types of terrain will be shown. The accuracy and economy of the model make it a useful tool for estimating wind energy and also for giving wind fields for low-level diffusion models.  相似文献   

15.
The phenomenon of meandering of the wind-turbine wake comprises the motion of the wake as a whole in both horizontal and vertical directions as it is advected downstream. The oscillatory motion of the wake is a crucial factor in wind farms, because it increases the fatigue loads, and, in particular, the yaw loads on downstream turbines. To address this phenomenon, experimental investigations are carried out in a wind-tunnel flow simulating an atmospheric boundary layer with the Coriolis effect neglected. A \(3 \times 3\) scaled wind farm composed of three-bladed rotating wind-turbine models is subject to a neutral boundary layer over a slightly-rough surface, i.e. corresponding to offshore conditions. Particle-image-velocimetry measurements are performed in a horizontal plane at hub height in the wakes of the three wind turbines occupying the wind-farm centreline. These measurements allow determination of the wake centrelines, with spectral analysis indicating the characteristic wavelength of the wake-meandering phenomenon. In addition, measurements with hot-wire anemometry are performed along a vertical line in the wakes of the same wind turbines, with both techniques revealing the presence of wake meandering behind all three turbines. The spectral analysis performed with the spatial and temporal signals obtained from these two measurement techniques indicates a Strouhal number of \(\approx 0.20 - 0.22\) based on the characteristic wake-meandering frequency, the rotor diameter and the flow speed at hub height.  相似文献   

16.
Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.  相似文献   

17.
A 44-year (1958–2001) high-resolution atmospheric hindcast for the whole Mediterranean Basin was performed within the EU-funded Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe (HIPOCAS) Project. The long-term hindcasted data set, which comprises several atmospheric parameters at different levels, was produced by means of dynamical downscaling from the NCEP/NCAR global reanalysis using the atmospheric limited area model REMO. The REMO hindcast has been exhaustively validated. On that score, various hindcasted surface parameters, such as 10-m wind field, 2-m temperature and mean sea level pressure, have been compared to satellite data (ERS-1/2 scatterometer) and in-situ measurements from offshore stations. In addition, two ocean models (waves and sea level) have been forced with REMO hindcasted fields (mean sea level pressure and 10-m wind field). The validation of these ocean runs, performed through comparisons of simulated waves and sea level with oceanographic measurements, allows to evaluate "indirectly" the quality of the REMO hindcasted data used as atmospheric forcing. Once the quality of the hindcasted data was verified, the efficiency of the regional enhancement performed through dynamical downscaling on the NCEP global reanalysis was assessed. The regional improvement was evaluated through comparisons of REMO and NCEP performance in reproducing observations. The important improvement obtained in the characterization of extreme wind events is particularly remarkable.  相似文献   

18.
Flow over Hills: A Large-Eddy Simulation of the Bolund Case   总被引:6,自引:6,他引:0  
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness properties.  相似文献   

19.
Summary The effects of internal waves on the propagation of acoustic pulses in the lower atmosphere were studied theoretically and by acoustic pulse sounding of the stable atmospheric boundary layer. Due to a control in the experiments of the stratification and time variations of meteorological parameters, such as wind speed, temperature and atmospheric pressure, we were able to observe the influence of the variations of these parameters on a pulse wave form, travel time and time duration. For the travel time and wind speed variations we obtained statistical characteristics (variances, frequency spectra and coherences) in the range of periods from 1 min to 1h and found several dominant periods, which are inherent to the trapped internal waves in the lower atmosphere. Using a nonlinear model of internal wave spectrum in the atmosphere described here we have made the calculations of variances, frequency spectra and structure functions of travel time fluctuations, which allowed us to interpret some of the observed data.  相似文献   

20.
Summary A land-air parametrization scheme (LAPS) describes mass, energy and momentum transfer between the land surface and the atmosphere. The scheme is designed as a software package which can be run as part of an atmospheric model or a stand-alone scheme. A single layer approach is chosen for the physical and biophysical scheme background. The scheme has six prognostic variables: two temperatures (one for the canopy vegetation and one for soil surface), one interception storage, and three soil moisture storage variables. The scheme's upper boundary conditions are: air temperature, water vapour pressure, wind speed, radiation and precipitation at some reference level within the atmospheric boundary layer. The sensible and latent heat are calculated using resistance representation. The evaporation from the bare soil is parametrized using the scheme. The soil part is designed as a three-layer model which is used to describe the vertical transfer of water in the soil.The performances of the LAPS scheme were tested using the results of meteorological measurements over a maize field at the experimental site De Sinderhoeve (The Netherlands). The predicted partitioning of the absorbed radiation into sensible and latent heat fluxes is in good agreement with observations. Also, the predicted leaf temperature agrees quite well with the observed values.With 9 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号