首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major climatic changes and rapid local and regional tectonic movements were common in New Zealand during the late Quaternary and caused a diversity of adjustments in the drainage-basin and piedmont reaches of the Charwell River, which are separated by the Hope Fault. The onset of semi-arid, frigid climates during the latest Pleistocene probably greatly increased hillslope sediment yields in a periglacial environment, and the piedmont reach aggraded as much as 42 m on top of a broad strath. With the return of humid, mesic climates in the Holocene sediment yields decreased as dense forests again mantled the slopes, and the piedmont reach degraded as mush as 81 m. Dating of eleven cut-and-strath terraces by radiocarbon-calibrated weathering rind measurements on greyawake cobbles shows the degradation rates varied greatly during the last 14 ka (1 ka = 1000 yr). Initial degradation rates of < 4 m ka−1 increased to 30 m ka −1 by 6 ka ago during a mid-Holocene climatic optimum. Since 4 ka ago degradation rates have been only 1.2 m ka−1, comparable to uplift rates in the piedmont reach inferred from marine-terrace studies, and the river is again cutting a broad strath. Each broad strath represents equilibrium conditions attained by this powerful stream during interglacial times despite episodes of being overwhelmed by climatically induced sediment-yield increases during full-glacial climates and having to maintain a long-term degradation rate equal to the uplift rate.The 75–81 m of degradation since formation of the latest Pleistocene fill-terrace tread is the sum of the amount of late Pleistocene valley-floor aggradation and the amount of regional uplift that occurred between the estimated times of major strath formation at about 30 and 0 ka. The 39 m of tectonically induced degradation below the pre-aggradation strath is sufficiently large that post-30 ka uplift may have doubled Holocene degradation rates.Each of the eleven degradation terraces represents pauses of a few centuries in Holocene downcutting. Brief equilibrium conditions were attained by streambed armoring and concurrent growth of riparian plants; both processes progressively increased hydraulic roughness and the shear stresses needed to entrain streambed materials. Occasional floods, possibly from rare cyclones derived from tropical moisture sources, destroyed streambed armor and channel downcutting was renewed. Thus the formation of eleven equilibrium terraces can be accounted for without postulating additional tectonic perturbations or secular climatic changes.  相似文献   

2.
黄土高原古土壤形态特征的差异及成因探讨   总被引:9,自引:5,他引:4  
灵台剖面第四纪晚期古土壤-这里指S8及其上古土壤;第四纪中早期古土壤-这里指离石黄土S9及其下古土壤和午城黄土中所有古土壤;第三纪古土壤-指么三纪红粘土,在形态特征上有明显区别。这种区别是由于古成土过程中水分运行方式的不同造成的。根据形态特征和古成土过程水作用方式的差异,把上述3个时代的古土壤依次淋溶型古土壤、滞圹地下水升降型古土壤。不同时代古土壤成土过程水作用方式的这种差异,是由降水量、尘降速率  相似文献   

3.
The Quaternary evolution and the morpho-sedimentary features of some of the most important rivers in Spain (Ebro and Tagus rivers among others) have been controlled by subsidence due to alluvial karstification of the evaporitic bedrock. The subsidence mechanism may range from catastrophic collapse to slow sagging of the alluvium by passive bending. In the Ebro Basin, the mechanisms and processes involved in karstic subsidence were studied through the analysis of present-day closed depressions as well as through old subsidence depressions (palaeocollapses and solution-induced basins) and associated deformations recorded in the Quaternary alluvial sediments. The Gállego–Ebro river system is presented as a case study of channel adjustments and geomorphic and sedimentary evolution of fluvial systems in dissolution-induced subsidence areas. In this fluvial system, evaporite dissolution during particular Quaternary time intervals (namely early and middle Pleistocene) have lead to the development of a solution-induced basin, approximately 30 km-long by 8 km-wide, filled by Quaternary deposits with a total thickness in excess of 190 m. The main river response to balance the subsidence in the alluvial plain was aggradation in the central reach of the subsiding area, and degradation both in the upstream reach and in the valley sides where alluvial fans and covered pediments may prograde over the fluvial sediments. The main sinking areas are recognized in the sedimentary record by anomalous thickenings in the alluvial deposits and fine-grained sediments deposited in backswamp and ponded areas.  相似文献   

4.
长江河口地区第四纪古地理古环境变迁   总被引:17,自引:4,他引:17  
陈中原  杨文达 《地理学报》1991,46(4):436-448
通过对钻孔样品的粒度、层理揭片、矿物、微体古生物、孢粉、地球化学元素及古地磁等项目的实验室分析,着重探讨长江河口地区第四纪古地理、古环境变迁特征和长江三角洲的发育过程。  相似文献   

5.
The Late Glacial and Holocene geomorphology of the Manx uplands has received scant attention in previous researches. Solifluction deposits and terraces provide the earliest evidence for geomorphic activity after deglaciation. Fluvial incision into drift-choked valleys is correlated with the formation of the large mountain front alluvial fans that flank the Manx uplands. Formation of these alluvial fans is constrained to 15,000–10,500 cal. years BP by 14C dates on organic deposits beneath and above the alluvial fan gravels. Alluvial fan and river terraces along four valleys postdate this incision. Optically Stimulated Luminescence (OSL) and 14C dating provide a tentative chronology for these landforms. The higher terraces are Late Glacial fluvial surfaces that were probably occupied by rivers into the Holocene. Incision during the Late Holocene led to the abandonment of the higher surfaces, producing a suite of younger river terraces and alluvial fan surfaces. Independent dating constrains this fluvial activity to post-Bronze Age (3500–2800 cal. years BP). Increased human activity and climatic change during the Late Holocene are possible causes for this increased geomorphic activity.  相似文献   

6.
ABSTRACT This contribution deals with the External Sierras and a part of the foreland Ebro Basin related to the southern Pyrenean thrust front. The structure of the External Sierras consists of a south‐verging thrust system developed from middle Eocene to early Miocene times. Since the end of the early Oligocene, a regional‐scale detachment anticline (the Santo Domingo anticline) developed, folding the original thrust system and creating new thrust units. The molassic fill in this part of the Ebro Basin (Uncastillo Formation) mainly corresponds to an extensive, composite distributary fluvial system, termed the Luna system, which drained the uplifted Gavarnie Unit to the north. Small, marginal alluvial fans originated along the External Sierras and coalesced in the proximal‐middle portions of the Luna system. Three tecto‐sedimentary units (TSU), late Oligocene to early Miocene in age, comprise the Uncastillo Formation. Lateral relationships and areal distribution of lithofacies through time have been used to establish sedimentary models for the marginal alluvial fans and the Luna fluvial system. Their sedimentary evolution was controlled by tectonics affecting the drainage basins, and based on mapping and stratigraphic relationships of the TSU, the temporal succession of the marginal alluvial fans and their relationships with each thrust system in the south Pyrenean front can be shown. Alluvial fan formation evolved through time from west to east, in accord with the progressive eastward growth of the Santo Domingo anticline as a conical fold. The fluvial network of the Luna system appears to have been mainly radial, but near the basin margin its architecture was influenced by the syndepositional Fuencalderas and Uncastillo anticlines developed within the Ebro Basin. These low‐amplitude folds originated by layer‐parallel shearing caused by rotation of the southern flank of the Santo Domingo anticline. Progressive uplift of these anticlines constrained part of the fluvial discharge to synclinal areas parallel to the basin margin; these areas where characterized by meandering sandy channels. At the peripheral tips of the anticlines the channel system flowed basinward.  相似文献   

7.
Distinguishing tectonic from climatic controls on range-front sedimentation   总被引:3,自引:0,他引:3  
Geologic and chronometric studies of alluvial fan sequences in south-central Australia provide insights into the roles of tectonics and climate in continental landscape evolution. The most voluminous alluvial fans in the Flinders Ranges region have developed adjacent to catchments uplifted by Plio-Quaternary reverse faults, implying that young tectonic activity has exerted a first-order control on long-term sediment accumulation rates along the range front. However, optically stimulated luminescence (OSL) dating of alluvial fan sequences indicates that late Quaternary facies changes and intervals of sediment aggradation and dissection are not directly correlated with individual faulting events. Fan sequences record a transition from debris flow deposition and soil formation to clast-supported conglomeritic sedimentation by ∼30 ka. This transition is interpreted to reflect a landscape response to increasing climatic aridity, coupled with large flood events that episodically stripped previously weathered regolith from the landscape. Late Pleistocene to Holocene cycles of fan incision and aggradation post-date the youngest-dated surface ruptures and are interpreted to reflect changes in the frequency and magnitude of large floods. These datasets indicate that tectonic activity controlled long-term sediment supply but climate governed the spatial and temporal patterns of range-front sedimentation. Mild intraplate tectonism appears to have influenced Plio-Quaternary sedimentation patterns across much of the southern Australian continent, including the geometry and extent of alluvial fans and sea-level incursions.  相似文献   

8.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   

9.
天山北麓河流阶地序列及形成年代   总被引:4,自引:1,他引:3  
天山北麓河流阶地序列及其年代一直是悬而未决的问题。根据详细的野外工作, 确定天山北麓发育7 级河流阶地, 其中T7、T6、T5 及T2 等主要阶地为河流切割先期冲积扇而形 成, 与4 级阶地对应的4 期冲积扇分别为F1、F2、F3 与F4。由于天山北麓构造隆升向盆地方 向迁移, 冲积扇呈串珠状发育, 背斜带间发育的冲积扇平面形态则由于南北背斜的限制而变 得不规则。基于黄土-古土壤序列对比分析、ESR 与OSL 测年以及前人研究成果, 确定天山 北麓河流下切形成T7、T6、T5 及T2 等阶地的时间分别为约0.54 Ma BP、0.3~0.2 Ma BP、 28~8 ka BP 和全新世早期。阶地年代表明, 天山北麓3 级主要阶地T7、T6、T5 及对应冲积扇 发育与天山更新世3 个冰期间冰期旋回基本对应。  相似文献   

10.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

11.
高照山 《地理研究》1988,7(4):40-47
达来诺尔是在汗克拉源水头两个新生代断陷盆地、古地貌、新构造运动的影响下,几经变迁发育而成.中更新世中期该湖出现在好鲁厍一带,末期湖面扩大;晚更新世中期湖水占据现代分水岭两侧宽广地带,末期湖水越过分水岭超复全区;全新世地壳上升,湖水退缩在区内景低位置.  相似文献   

12.
This study investigates the origin and regional tectonic implications of high-altitude Plio (?)–Quaternary fluvial deposits developed over the Bozdağ horst which is an important structural element within the horst–graben system of western Anatolia, Turkey.A total of 23 deposits occur near the modern drainage divide comprising fluvial to occasionally lacustrine deposits. The deposits are all elongated in N–S direction with a width / length ratio of 1 / 10. The largest of them is of 13 km in length with a maximum observable thickness of about 100–110 m. Morphological, lithological, deformational characteristics of these deposits and the drainage system of the area all suggest that the deposits were formed due to uplift and southward tilting of the Bozdağ horst. This tilting which is estimated as 1.2° to 2.2° caused accumulation of the stream load along channels flowing from south to north. All the deposits were later dissected by the same streams with the exception of one deposit which still preserves its original lake form. These deposits are of Quaternary age, which corresponds to the latest N–S directed extensional tectonic phase in the region.  相似文献   

13.
A vast bajada consisting of coalescing low-gradient (< 0.3°) alluvial fans exceeding 100 km in length formed along the southwestern margin of the Oman Mountains. It comprises an old fan sequence of inferred Miocene to Pliocene age termed Barzaman Formation, diagenetically highly altered to dolomitic clays, and a thin veneer of weakly cemented Quaternary gravels. A combination of remote sensing, lithological analyses and luminescence dating is used to interpret the complex aggradation history of the Quaternary alluvial fans from the interior of Oman in the context of independent regional climate records. From satellite imagery and clast analysis four fans can be discerned in the study area. While two early periods of fan formation are tentatively correlated to the Miocene–Pliocene and the Early Pleistocene, luminescence dating allows the distinction of five phases of fan aggradation during the Middle–Late Pleistocene. These phases are correlated with pluvial periods from Marine Isotope Stage (MIS) 11 through 3, when southern Arabia was affected by monsoonal precipitation. It is concluded that the aggradation of the alluvial fans was triggered by the interplay of increased sediment production during arid periods and high rainfall with enhanced erosion of hillslopes and transport rates during strong monsoon phases. However, the lack of fine-grained sediments, bioturbation and organic material implies that although the Quaternary fans are sourced by monsoonal rains they formed in a semi-arid environment. Thus, it appears that, in contrast to the Oman Mountains, the interior was not directly affected by monsoonal precipitation.  相似文献   

14.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

15.
The deepest part of the Canary Basin, the Madeira Abyssal Plain, receives allochthonous sediments derived from a large drainage basin which, if its subaerial continuation is included, covers an area of 3.36 times 106 km2. An international research effort over the last 10 years has recovered over 160 sediment cores from the plain, and the development of a high-resolution stratigraphy has enabled individual turbidites to be correlated layer by layer. Sedimentation on the Madeira Abyssal Plain during the late Quaternary is dominated by thick turbidite muds separated by thin pelagic intervals. The core density has allowed the mapping of each sedimentary unit throughout the abyssal plain, thus building up a layer by layer picture of sediment accumulation. Over the last 300 kyr, 600 km3 of turbidites compared to 60 km3 of pelagic sediments have been deposited on the plain. Sedimentary structures developed in the coarse basal facies of the larger turbidites are more complex than simple models predict due to surging flows, fluctuating flow velocities and reflection from adjacent high ground. Over the last 300 kyr, there has been a switching of entry points for turbidity currents entering the abyssal plain. From 300 ka to 200 ka, organic-rich turbidites were emplaced predominantly from the south but around 200 ka this source switched off and subsequent organic- and volcanic-rich turbidites, which included units deposited by giant, possibly hyperconcentrated flows, were emplaced from northern or eastern sources. Although restricted to the late Quaternary, the data presented provides a detailed case study of the evolution of an oceanic basin fill.  相似文献   

16.
《自然地理学》2013,34(5):343-365
Soils buried by alluvial fan deposits in southwest Nebraska record several intervals of increased sediment yield from small watersheds during the Holocene. These intervals, which began at ca. 9000, 5800, 4000, 3000, and 1000 14C yrs. B.P., were probably caused by some sort of change in regional climatic conditions. Existing evidence of Holocene climate change suggests that increased sediment yields were caused by periodic shifts toward drier climatic conditions, except for the intervals that began at 5800 and 4000 14C yrs. B.P. The cause of increased sediment yields at those times is unclear, although an increased frequency of large intense storms may have been a contributing factor. The record of soil burial exhibits considerable spatial variability both within individual fans and between fans. This is partly due to practical limitations on the number of buried soils that could be sampled on each fan. But it is also due to the inherent spatial variability of depositional processes and to differences in the geomorphic development of the four fans. Thus, researchers who use data from fans to reconstruct sediment-yield histories need to investigate several sites on several fans in order to obtain as complete a record as possible of changing sediment yields.  相似文献   

17.
The Nysa K odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley.  相似文献   

18.
The Wahiba Sands in northeastern Oman are bordered on the north, south and west by highlands. Remote sensing data are used to characterize the region between 19–23.5°N and 56.5–60°E by mapping surface and near-surface drainage, faults and fractures and aeolian features. It is suggested that the sands were originally deposited with surface runoff from the principal wadis and fluvially reworked fault zones, which define the northeastern and southwestern margins. These fluvial processes resulted in the accumulation of the vast groundwater resources now stored there. During dry climates, wind became the principal modification regime and it began to sort and shape the sediments into the dune forms that characterize today's Wahiba region. The thickness of the sands reflects the depth of the basin in which they lie. The center of the basin is filled with the thickest sand (the High Sands) and contains the highest groundwater concentrations. Presently, aeolian reworking dominates in the Wahiba region, although the Low and the Peripheral Sands continue to experience some fluvial action from occasional, seasonal rainfall. Even though dry conditions dominate today, it is clear that similar to the Sahara of North Africa, the surface sands of the Wahiba basin are indicators of groundwater occurrence.  相似文献   

19.
Quaternary catchments in the south of the Sorbas Basin, SE Spain have been affected by two regionally significant river captures. The river captures were triggered by changes in regional gradients associated with sustained Quaternary uplift in the region of 160 m Ma−1. The first capture occurred in the early Pleistocene and re-routed 15% of the original Sorbas Basin drainage into the Carboneras Basin to the south. The second occurred in the late Pleistocene and re-routed 73% of the original Sorbas Basin drainage to the east. This latter capture had dramatic consequences for base-level in the Sorbas Basin master drainage. Local base-level was lowered by 90 m at the capture site, 50 m at 7 km upstream and 25 m at 13 km upstream of the site. The base-level change instigated a complex re-organisation of the drainage networks in systems tributary to the master drainage over the ensuing period (some 100 ka). After the capture, drainage systems closer to the capture site experienced a tenfold increase in incision rates over most of their network. Those located some 13 km upstream of the capture site experienced a fivefold increase in incision, although in this instance, the changes do not appear to have propagated to the headwater regions of the drainage nets. The sensitivity of individual catchments was largely governed by geological controls (structure and lithology). The detailed network evolution in the most sensitive areas can be traced by reconstructing former drainage pathways using abandoned drainage cols and the alignment and degree of incision of the drainage networks. Three main stages of evolution can be identified which record the progressive spread of base-level changes from the master drainage. These are Stage 1 (pre-capture): original south-to-north consequent drainage; Stage 2 (early stage, post capture): aggressive subsequent southwest-to-northeast and east–west drainage developed along structural lineaments first in the east of the area (Stage 2a), and later in the west of the area (Stage 2b); and Stage 3 (late stage, post capture): obsequent drainage developing on the topography of the Stage 2 drainage. All stages of the network evolution are associated with drainage re-routing as a function of river capture at a variety of scales. The results highlight the complex response of the fluvial system, and the very different geomorphological histories of adjacent catchments, emphasising the need for regional approaches for examining long-term changes in fluvial systems.  相似文献   

20.
Comparatively little is known about net aggradation on alluvial fans, despite fan construction wherever sediment-delivery rates from uplands exceed sediment-removal rates from receiving basins. In January 1983, 20 alluvial fans in the forested Cascade foothills, northwest Washington, experienced net aggradation in response to debris torrents and stream floods triggered by intense warm rains falling on antecedent snow. Five trenches were excavated to 5 m depth on the Mills Creek fan to place the 1983 event in temporal perspective. The deposits reflect normal streamflow, hyperconcentrated streamflow and debris torrent (flow) conditions. One trench revealed residues of 7 events since 1720 BP. Net rates of Holocene aggradation, based on sediments overlying late Pleistocene fluvioglacial deposits, average 0.42 m ka-1. Net rates for later Holocene time range from 2.17 m ka-1 since 1720 BP to 2.36 m ka-1 since 430 BP. These recent rates exceed the local value for the entire Holocene and rates for humid temperate fans elsewhere. This suggests that accelerated aggradation may characterize later Holocene times, a view that contrasts with the widespread belief that the later Holocene has been dominated by fan-head incision and net degradation. More comparative data are needed to test this observation. Locally, large debris-producing events in 1917 and 1983 are consistent with later Holocene recurrence intervals and thus appear to be independent of timber harvesting. [Key words: alluvial fan, debris torrent, debris flow, streamflow, Washington.]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号