首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS). The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.  相似文献   

3.
本研究基于美国GUVI观测氧原子135.6 nm夜气辉光谱数据,建立了GUVI临边观测模型,采用正则化和牛顿迭代法相结合的方法,消除了权重矩阵的病态问题,得到了峰值电子密度和峰值高度,并结合电离层电子密度的Chapman表达式,反演得到了电离层电子密度剖面.将得到的反演结果与地基方式获取的观测数据进行比较,两者吻合得很好.之后,反演得到了磁暴期2002年9月29日到10月3日的电子密度剖面,初步分析了电离层电子密度剖面随磁暴的变化情况.  相似文献   

4.
The climatology of ionospheric plasma bubbles is studied here by means of a comparison of the frequency of occurrence of the spread-F/plasma bubble events over the South American region using the images from two OI 630 nm imager systems located at the subequatorial station São João do Cariri—CA (7.4 S, 36.5 W, 20 S dip) and the low-latitude station Cachoeira Paulista—CP (22.5 S, 45 W, 33 S dip) in Brazil during the years of 2004 and 2005. The results are discussed in the light of current theory and geomagnetic parameters of the two observation stations.  相似文献   

5.
太阳活动低年夏季,低纬电离层F区场向不规则体表现出与太阳活动高年和其他季节明显不同的特征.本文利用我国三亚站(18.4°N,109.6°E,地磁倾角纬度dip latitude 12.8°N)VHF雷达、电离层测高仪、GPS闪烁监测仪和美国C/NOFS卫星观测数据,研究了太阳活动低年夏季我国低纬电离层F区场向不规则体的基本特征.分析发现无论磁静日还是磁扰日,夏季电离层F区不规则体回波主要出现于地方时午夜以后,回波出现的时间较短,高度范围较小,伴随着扩展F出现,但没有同时段的L波段电离层闪烁.太阳活动低年夏季午夜后的低纬电离层F区不规则体回波,可能并不总是与赤道等离子体泡沿磁力线向低纬地区的延伸相关,而可能由本地Es等扰动过程引起.  相似文献   

6.
Effect of the equatorward shift of the eastward and westward electrojets during magnetic storms main phase is analyzed based on the meridional chains of magnetic observatories EISCAT and IMAGE and several Russian observatories (geomagnetic longitude ≈110°, corrected geomagnetic latitudes 74°>φ>51°.) Magnetic storms of various Dst index intensity where the main phase falls on 1000 UT - 2400 UT interval were selected so that one of the observatory chains was located in the afternoon - near midnight sector of MLT. The eastward electrojet center shifts equatorward with Dst intensity increase: when Dst ≈ −50 nT the electrojet center is located at φ ≈ 62°, when Dst ≈ −300 nT it is placed at φ ≈ 54°. The westward electrojet center during magnetic storms main phase for intervals between substorms shifts equatorward with Dst increase: at φ ≈ 62° when Dst ≈ −100 nT and at φ ≈ 55° when Dst ≈ −300 nT. During substorms within the magnetic storms intervals the westward electrojet widens poleward covering latitudes φ ≈ 64°–65°. DMSP (F08, F10 and F11) satellite observations of auroral energy plasma precipitations at upper atmosphere altitudes were used to determine precipitation region structure and location of boundaries of various plasma domains during magnetic storms on May 10–11, 1992, February 5–7 and February 21–22, 1994. Interrelationships between center location, poleward and equatorward boundaries of electrojets and characteristic plasma regions are discussed. The electrojet center, poleward and equatorward boundaries along the magnetic observatories meridional chain were mapped to the magnetosphere using the geomagnetic field paraboloid model. The location of auroral energy oxygen ion regions in the night and evening magnetosphere is determined. Considerations are presented on the mechanism causing the appearance in the inner magnetosphere during active intervals of magnetic storms of ions with energy of tens KeV. In the framework of the magnetospheric magnetic field paraboloid model the influence of the ring current and magnetospheric tail plasma sheet currents on large-scale magnetosphere structure is considered.  相似文献   

7.
A novel approach is described which can help to determine, from ground-based data, which of the possible production mechanisms for the mid-latitude F-region ionospheric trough is dominant during a particular event. This approach involves numerically modelling the possible causal mechanisms of the mid-latitude trough to see how each will affect the altitude of the F2-layer electron-concentration peak (hmF2), and then comparing these predictions with the observed variation of hmF2 during trough formation. The modelling work predicts that, if the neutral-wind velocity does not vary, hmF2 will remain almost constant if the trough is formed via stagnation, but will rise if it is formed as a result of high ion velocities or neutral upwelling. Observations made at Halley (76°S, 27°W, L=4.2), Antarctica, show that most frequently the only changes in hmF2 during trough formation are those expected due to variations in the neutral wind, which suggests that stagnation is the most common production mechanism. During the most geomagnetically active night studied, on which Ap varied between 18 and 32, there was a rise in hmF2 that cannot be explained by changes in the neutral wind. On this night the plasma also decayed faster, and the poleward edge of the trough was seen earlier than on other nights. These differences, together with the fact that the ion velocities remained relatively low, suggest the trough was caused by a change in neutral composition, possibly advected into the observing area.  相似文献   

8.
An active aurora was observed at Eureka, Canada (88.9° N magnetic) following the arrivalat the magnetopause of the shock front resulting from the solar Coronal Mass Ejection of 6January 1997. This onset at 02:20 UT on 10 January marked the beginning of an aurora whichcontinued until at least 15:00 UT on 11 January, as viewed from both Eureka and the CANOPUSsite at Ft Smith (67.8° N magnetic). There were enhanced OI 630 nm polar F-region emissionsthroughout this period, with the IMF Bz controlling their form. When Bz was positive, there were continuous polar arcs; when Bzturned negative there were F-layer patches on open field lines. While the strong Hβ observed over Ft Smith (240 R) in addition to the extended 630 nm emissions and theirpersistence over two days suggested a red aurora of global proportions, it apparently did notextend to latitudes below 60°. There was a moderate magnetic storm associated with the aurora,but the Dst index reached only −81 nT on 10 January.  相似文献   

9.
Two Fourier transform spectrometers have been used to investigate the properties of the near-infrared hydroxyl (OH) nightglow emission under high-latitude summertime conditions and any association with noctilucent clouds (NLCs). The measurements were made from Poker Flat Research Range, Alaska (65.1°N, 147.5°W), during August 1986. Simultaneous photographic observations of the northern twilight sky were made from Gulkana, Alaska (62.2°N, 145.5°W), approximately 340 km to the south to establish the presence of NLCs over the spectrometer site. Data exhibiting significant short-term variations in the relative intensity (as much as 50-100%) and rotational temperature (typically 5–15 K) were recorded on six occasions when NLCs were observed. Joint measurements were also obtained on several “cloud-free” nights. No obvious relationship was found linking the mean OH intensity or its variation with the occurrence of NLCs. However, a clear tendency was found for the mean OH temperature to be lower on NLC nights than on cloud-free nights. In particular, a significant fraction of the OH(3-1) band spectra recorded by each instrument (16-57%) exhibited temperatures below \sim154 K on NLC nights compared with <3% on cloud-free nights. This result is qualitatively consistent with current models for ice particle nucleation and growth, but the mean OH temperature on NLC nights (\sim156 K) was significantly higher than would be expected for long-term particle growth in this region. These observations raise questions concerning the expected proximity of the high-latitude, summertime OH layer and the NLC growth region.  相似文献   

10.
Atmospheric gravity waves, detected over Kiruna (67.8°N, 20.4°E) during geomagnetic storms, are presented and analysed. The data include direct measurements of the OI 630.0 nm emission line intensity, the x-component of the local geomagnetic field and thermospheric (meridional and zonal) wind velocities derived from the OI 630.0 nm Doppler shift observed with an imaging Fabry-Perot interferometer (IFPI). A low pass band filter technique was used to determine short-period variations in the thermospheric meridional wind velocities observed during geomagnetic storms. These short-period variations in the meridional wind velocities, which are identified as due to gravity waves, are compared to the corresponding variations observed in the OI 630.0 nm emission line intensity, x-component of the local geomagnetic field and the location of the auroral electrojet. A cross-correlation analysis was used to calculate the propagation velocities of the observed gravity waves.  相似文献   

11.
A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz <0). The ionosondes measured electron densities of up to 9 × 1011 m−3 in the patch center, an increase above the density minimum between patches by a factor of ≈4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.  相似文献   

12.
It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the “enhanced ion-line” usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.  相似文献   

13.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   

14.
Using the method of characteristics to invert ground-based data of the ground magnetic field disturbance and of the ionospheric electric field, we obtain spatial distributions of ionospheric conductances, currents, and field-aligned currents (FACs) associated with a north-south auroral form that drifts westwards over northern Scandinavia around 2200 UT on December 2, 1977. This auroral form is one in a sequence of such north-south structures observed by all-sky cameras, and appears 14 min after the last of several breakups during that extremely disturbed night. Our analysis shows that the ionospheric Hall conductance reaches values above 200 S in the center of the form, and upward flowing FACs of up to 25 μA/m2 are concentrated near its westward and equatorward edge. The strong upward flowing FACs are fed by an area of more distributed, but still very strong downward-flowing FACs northeastward of the auroral form. In contrast to the conductances, the electric field is only slightly affected by the passage of the form. We point out similarities and differences of our observations and results to previously reported observations and models of ‘auroral fingers’, ‘north-south aurora’, and ‘auroral streamers’ which are suggested to be ionospheric manifestations of bursty bulk flows in the plasma sheet.  相似文献   

15.
Equatorial plasma bubbles (EPBs) are field-aligned depletions of F-region ionospheric plasma density that grow from irregularities caused by the generalized Rayleigh–Taylor instability mechanism in the postsunset equatorial sector. Although they have been studied for some decades, they continue to be an important subject of both experimental and theoretical investigations because of their effects on trans-ionospheric radio communications.In this work, calibrated data of slant total electron content (sTEC) taken every 10 min from EGNOS System Test Bed Brazzaville (Congo), Douala (Cameroon), Lome (Togo) and N’Djamena (Chad), and International GNSS Service Ascension Island, Malindi (Kenya), and Libreville (Gabon), stations are used to detect plasma bubbles in the African equatorial region during the first 6 months of 2004. To identify these irregularities, the trend of every curve of sTEC against time is subtracted from the original data. The size of the EPBs is estimated by measuring its amplitude in the de-trended time variation of sTEC.  相似文献   

16.
Longitudinal variation in E- and F-region ionospheric trends   总被引:1,自引:0,他引:1  
A novel technique is used to examine northern hemisphere midlatitude longitudinal variations in ionospheric long-term trends. Differences in hour-by-hour monthly median ionospheric parameters between equilatitudinal observatory pairs are analysed for long-term trends, thus eliminating at source the large solar cycle and geomagnetic variability that normally hinders ionospheric trend calculations. The results confirm the finding of Bremer [1998. Trends in the ionsopheric E- and F-regions over Europe. Annales Geophysicae 16, 698–996] that there are longitudinal variations in the F-region altitude trend across Europe, but suggest the influence of a stationary wave-like feature between 3°W and 104°E. Possible causes such as scaling errors, insufficient account of changes in ionisation underlying the F-region, varying gravity wave fluxes, and secular change in the geomagnetic field are ruled out. The data suggest that the longitudinal variation may reflect long-term changes in a large-scale stationary feature induced via non-migrating tides induced by latent heat release in the troposphere.Significant differences in the long-term trend of E-region peak plasma frequency between observatories were also found. These E-region differential trends varied with solar zenith angle reaching over 0.3 MHz per decade between Juliusruh and Moscow at midday in summer.  相似文献   

17.
We present the characteristics of the response of equatorial ionospheric zonal electric field and F-region plasma density to the asymmetric ring current intensifications that occurred in succession on 16 December 1991, corresponding to the STEP/EITS-2 campaign period. The study is based on high-time-resolution (1-min) data of asymmetic ring current indices, ASY(H/D) and F-region vertical plasma drift, Vz measurements at Kodaikanal (10.25°N; 77.5°E; dip 4°), India and quarter-hourly ionosonde data of For-taleza (4°S; 322°E; dip -9°), Brazil. It is shown that short-lived disturbances in F-layer vertical plasma drift, Vz and height (hF/hpF2) indicative of westward and eastward electric fields prevail simultaneously in the dusk (18–21 LT) and predawn (02–05 LT) sectors, respectively, in association with the decay phase of asymmetic ring current events. Electric fields of opposite polarity do also seem to manifest at these local times, particularly in the early-morning sector in conjunction with the intensification of the asymmetric ring current. At a given location, electric field disturbances associated with individual asymmetric ring current events are thus bipolar in nature, with fields of opposite polarity during the growth and decay phases. The nature and polarity structure of the observed electric field disturbances are in agreement with the theoretical/model predictions of prompt penetration of high-latitude electric fields to the equatorial region.On sabbatical leave from Indian Institute of Astrophysics, Bangalore, India  相似文献   

18.
This work investigates the tropical O(1S) nightglow variations utilizing observations from the Wind Imaging Interferometer (WINDII) operated on the Upper Atmosphere Research Satellite (UARS) and photometers installed at the Arecibo Observatory (18°N, 67°W) in Puerto Rico. Both are long-term datasets, but there is limited overlap in the dates of observation. Their simultaneous observations of column integrated emission rate on 6 continuous days in 1993 have a consistent difference at some times. The ground-based emission rate includes the F-region component of the O(1S) emission, while the vertical profiles of WINDII allow the E- and F-region emission to be separated. This allows subtraction of the F-region emission rate for the Arecibo measurements and leads to a decisive study of the O(1S) nightglow variation. The monthly averaged integrated emission rates (excluding the F-region component) are computed for WINDII from November 1991 to August 1997 and for the photometer data through 1983–2004. The emission rates between WINDII and Arecibo exhibit a similar semiannual variation. They have maxima at the two equinoxes and minima at solstices with a larger maximum in spring than in fall, while the WINDII averaged emission rates are larger than the apparent photometer averages by a factor of 2 for the mean values. The satellite WINDII and ground-based Arecibo instruments sample local time hours differently, but the local time influence is found not to be the origin of the difference. Because the observation periods are for different solar cycle intervals for the WINDII and Arecibo datasets, the influence of the solar F10.7 cm flux on the O(1S) nightglow emission rate is also studied. The comparison between WINDII and Arecibo further offers a possibility to assess the atmospheric transmittance for these ground-based observations. The MODTRAN estimated transmittance of 0.7 is reasonably consistent with the difference in the O(1S) nightglow emission rate between WINDII and the Arecibo photometer.  相似文献   

19.
An all-sky CCD imager designed to measure wave structure of the OH, O2b(0,1) and OI557.7 nm airglow emission layers in the mesosphere and lower thermosphere (MLT) region has been operated near the equatorial region at São João do Cariri (Cariri), Brazil, (7.5°S, 36.5°W). A large number of gravity wave was observed from September 2000 to September 2002 and among them 64 wave events were identified as mesospheric bores. The bore front shows a horizontal extension greater than 1000 km, and observed in the airglow layers as a complementary brilliance between the three emissions. At the first time mesospheric bore events were observed and analyzed in the equatorial region. Their predominant characteristics, occurrence, local time dependency, morphology and propagation direction will be presented and discussed.  相似文献   

20.
OI 630.0 nm dayglow data from Mt. Abu, India, along with ground based ionosonde data, were scrutinized for the 6–12 January 1997 space weather related event. The OI 630.0 nm dayglow intensities registered an enhancement by a factor of 2–2.5 on 11 January, in the morning hours, as compared to 9 and 12 January, i.e. one day later than when auroral activities were noted at unusual latitudes and on the day when the magnetosphere was compressed to <6RE. The ionosonde data did not show any such dramatic increase in the F-region electron densities for the same period. Various plausible mechanisms that could cause the observed enhancement in the dayglow without altering the F-region of the ionosphere are discussed in the context of the actual measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号