首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
褐帘石富产于磁铁矿-褐帘石伟晶岩中,而且主要产在靠近接触带的粗粒花岗结构带和小块体结构带中。在文象带中也含有,但量较少。此外围绕着上述脉中黑云母片麻岩捕掳体的四周常形成褐帘石的富集。与斜长石、微斜长石、石英、黑云母、磁铁矿、磷灰石、锆英石,石榴石及独居石等共生。褐帘石彼此成不规则排列,并相互穿插生长形成块  相似文献   

2.
王汝成  王硕  邱检生  倪培 《岩石学报》2006,22(7):1855-1866
中国大陆超深钻(CCSD)主孔从100米到3000米切穿含柯石英榴辉岩,为系统研究大陆深俯冲过程中含稀土元素副矿物提供了机会。本文报道了该钻孔榴辉岩存在发现的绿帘石、褐帘石、磷灰石和钍石复合颗粒。它们以同心环带结构为特征,从边部向中心依次为绿帘石、褐帘石和磷灰石;钍石既可包裹再磷灰石中,也可见于褐帘石中。电子探针分析显示,褐帘石不仅含有较高的轻稀土元素(LREE2O3=23.36wt%),而且可含有2.6wt%ThO2。根据绿帘石和褐帘石的电子探针高分辨U、Th、Pb成分计算得到绿帘石边部的形成年龄为738±88Ma,该年龄与大别-苏鲁地体榴辉岩的元古代源岩的年龄相当,因此,绿帘石可能为残留相。相反,褐帘石的年龄为220±41Ma,与大别-苏鲁超高压变质年龄相近。因此,褐帘石与磷灰石和钍石一起应该为超高压变质事件的产物。根据绿帘石、褐帘石及其共生的磷灰石和钍石的结构、成分特征和化学定年结果,我们推测绿帘石与可能已完全消耗的独居石很可能为变质副矿物组合的先驱矿物。独居石-绿帘石复合颗粒在榴辉岩相高压/超高压变质过程中反应形成磷灰石+钍石+褐帘石组合。  相似文献   

3.
褐帘石是一种常见的副矿物,是控制岩石中LREE、Th、U和Sr等微量元素的重要载体。由于Th、U可以在褐帘石中以类质同象形式进入并富集于其晶格,因而褐帘石是一种良好的年代学工具。但是,由于褐帘石中含有不同含量的普通铅,分析结果中的普通铅扣除成为难题,这就使得近年来褐帘石U-Th-Pb定年的应用受到很大的限制。本文利用通过激光熔样-电感耦合等离子质谱(LA-ICP-MS)原位分析技术,对广东新丰稀土花岗岩中褐帘石单颗粒矿物原位分析,运用232Th/206Pbc—208Pb/206Pbc等时线方法,再根据等时线年龄利用铅同位素演化两阶段模型扣除普通铅的方式,对建立单颗粒褐帘石的U-Th-Pb激光定年方法进行了探讨。运用该方法对广东新丰稀土花岗岩中褐帘石单颗粒矿物进行分析得出的年龄约为160Ma,与早期通过岩浆锆石U-Pb定年法得出的年龄之前研究159Ma~165Ma十分相似。褐帘石中微量元素、δEu、Th/U比值和普通铅含量显示其特征的岩浆成因褐帘石。褐帘石定年这一在国内首次使用尚未开展的定年方法具有简单、方便、准确的特点,对于确定含此矿物的岩体年龄,尤其是成成矿花岗岩的岩体形成时年代限制将发挥重大作用,具有非常良好和广泛的应用前景。  相似文献   

4.
广东新丰稀土花岗岩中褐帘石LA-ICP-MS的U-Th-Pb定年研究   总被引:1,自引:0,他引:1  
郭海浩  肖益林  谷湘平  黄建  侯振辉  刘海洋 《地质学报》2014,(6):1025-1029,1031,1037
褐帘石是一种常见的副矿物,是岩石中LREE、Th、U和Sr等微量元素的重要载体。由于Th、U可以在褐帘石中以类质同象形式进入并富集于其晶格,因而褐帘石是一种良好的年代学研究对象。但是,由于褐帘石中含有不同含量的普通铅,分析结果中的普通铅扣除成为难题,这就使得近年来褐帘石U-Th-Pb定年的应用受到很大的限制。本文通过激光熔样-电感耦合等离子质谱(LA-ICP-MS)原位分析技术,对广东新丰稀土花岗岩中褐帘石单颗粒矿物进行了原位分析,运用232 Th/206Pb066 c-208Pb/2Pbc等时线(206 Pbc为普通20Pb的含量)方法,再根据等时线年龄利用铅同位素演化两阶段模型扣除普通铅的方式,对建立单颗粒褐帘石的U-Th-Pb激光定年方法进行了探讨。运用该方法对广东新丰稀土花岗岩中单颗粒褐帘石进行分析得出的年龄约为160Ma,与早期通过岩浆锆石U-Pb定年法得出的年龄(159~165Ma)十分相似。褐帘石的微量元素、δEu、Th/U比值和普通铅含量均显示其为特征的岩浆成因褐帘石。褐帘石定年这一定年方法具有简单、方便、准确的特点,对于确定含此矿物的岩体年龄,尤其是对成矿花岗岩的岩体形成时代将发挥重大作用,具有非常良好和广泛的应用前景。  相似文献   

5.
江西大吉山五里亭花岗岩中变生褐帘石的加热研究   总被引:1,自引:1,他引:0       下载免费PDF全文
陶克捷 《地质科学》1992,(4):399-403
对采自我国南方燕山期五里亭花岗岩体中的褐帘石,经偏光显徽镜、电子探针仪、差热仪、X射线等方法进行分析得出,该矿物为变生褐帘石。加热800℃,850℃,950℃,970℃,1100℃退火系列样品的X射线粉晶数据分析得出:1.变生褐帘石X射线粉晶分析的最宜加热温度为800-850℃;2.加热至970℃的退火样品,褐帘石已分解为方铈石、赤铁矿、钙长石,加热到1100℃,褐帘石已渐消失,方铈石、钙长石和赤铁矿成为主要矿物相。  相似文献   

6.
褐帘石的谱学特征   总被引:1,自引:0,他引:1  
陈菲  苏文  张铭  李晓光  胡鑫蒙 《岩石学报》2019,35(1):233-242
本文研究了6个来自不同产状、不同地区的含褐帘石样品,包括4个伟晶岩(M1663来自内蒙集宁益元兴、M7673来自内蒙集宁察汗营地区、M4960来自美国Amherst County Virginia地区、M4976来自挪威Liksviken地区)、2个矽卡岩(M1697产自河北地区、M1679产自湖南郴县地区)。通过对这6个不同产状褐帘石的电子探针主量、稀土和微量元素分析及拉曼、红外光谱学的研究来揭示褐帘石晶体化学特征。结果表明,褐帘石成分均匀,晶体内发育微裂隙,局部有脉体充填,但不同产状的褐帘石样品在主量元素如Fe O、Ca O、Al_2O_3以及REE如Ce_2O_3、Nd_2O_3、La_2O_3的含量具有明显的差别。其系统的光谱学数据表明褐帘石晶体的特征峰强度和峰位的偏移均与其组分有关,并分析指派了部分光谱峰位的归属,揭示了褐帘石中特殊谱峰位置的迁移与其元素含量、晶体结构之间的关系。拉曼光谱揭示了褐帘石单晶有20组拉曼活性谱峰(ν1~ν20),其中ν2~ν4、ν5~ν8、ν16~ν19谱峰的迁移与A位上的Ca与稀土元素之间置换作用有关;ν10~ν12谱峰是O-Si-O弯曲振动引起,其拉曼谱峰的偏移可能与Si含量有关;ν13~ν14谱峰的迁移则可能是多种元素变化共同作用的结果。褐帘石单晶红外光谱展示了13组红外活性谱峰(a-m),h-k谱峰的偏移与在M1或M3位上Fe~(3+)和Al相互替代而导致的; b-g谱峰的偏移是与硅氧四面体中Si-O非对称伸缩振动有关; OH(l-m)双峰的出现可能与M1、M3位上Fe~(3+)的含量有关。研究结果表明伟晶岩类岩石中褐帘石晶体结构中Fe~(3+)与Al~(3+)间的置换作用强于矽卡岩类岩石中的褐帘石;而矽卡岩类岩石中褐帘石晶体结构中在A位上稀土元素与Ca置换作用则大于伟晶岩类岩石中的褐帘石。  相似文献   

7.
研究了不同程度变生褐帘石及其热处理样品的红外光谱变化特征,提出其变生的红外光谱定量标志──变生反M=■(6-N)(N为750-200Cm-1范围的谱带数)。分析了变生作用中褐帘石晶格内离子基团的变化,结合晶体结构分析,提出褐帘石红外光谱中450、510cm-1附近的两个谱带分别系结构内孤立硅氧四面体SiO4及群体硅氧四面体Si2O7的弯曲振动谱带。  相似文献   

8.
绥远省地域内露出的片麻岩质花岗岩中,各处有伟晶花岗岩脉的侵入,十数年前,在此脉中已发现有稀元素矿物的存在。后经确认者,计有:褐帘石,钶酸钇矿,褐钇钽矿、钶铁矿、黑稀金矿、绿柱石、锂云母及锆英石八种。而作者所存者,仅褐帘石及钶酸钇矿二种。兹将此二种矿物的研究结果报告于下;  相似文献   

9.
普通褐帘石多含饰,常呈副矿物存在于花岗岩、矽卡岩、火山灰(Izett,1981、变质泥岩(Sakai er al., 1984)等岩类.本文所报道的近年发现的一种富教褐帘石,产于新疆哈图金矿外围伟晶石英脉中.该矿物深黑色,呈单斜柱状晶簇,晶体最长可达10cm以上。  相似文献   

10.
变生褐帘石产于甘肃永登县棚子沟一带的花岗伟晶岩中。该花岗伟晶岩呈脉状或不规则析离体状产于加里东期的中粗粒黑云母花岗岩中,主要由褐帘石(含量约25%)。钾钠长石(约24%)、石英(约21%)、普通角闪石(约16%)等矿物组成。尚见少量黑云母、绿帘石、微量榍石、磷灰石和锆石等。  相似文献   

11.
Allanite is, with monazite, the main repository for light rare earth elements (REE) in the continental crust and can be used in U-Th-Pb geochronology. This mineral has been shown to be prone to alteration. The geochemical exchanges occurring between allanite and hydrothermal fluids were explored using backscattered scanning electron microscopy, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The alteration mechanisms found show the restricted role of metamictization and correspond to the allanite to epidote transformation or to the leaching of the allanite A-crystallographic sites. Hence, the REE are mostly removed from this phase during fluid-mineral interactions, although a heavy rare earth-rich fluid may imprint its geochemical signature on the allanite altered zones. It appears that even if this REE holder presents evidence of alteration, the bulk mineral and whole-rock REE and Sm-Nd isotope signatures were not significantly affected in the cases studied. Alteration results mostly in the input of common lead, thus restricting the usefulness of allanite for U-Th-Pb dating when alteration occurs. Finally, the alteration mechanisms found here confirm the much more limited flexibility of silicates crystalline lattice as compared to phosphates.  相似文献   

12.
The composition of accessory REE minerals (allanite, chevkinite, fergusonite, and REE carbonates) in alkaline metasomatic rocks of the Main Sayan Fault (quartz-albite-microcline-riebeckite-aegirine, quartzalbite-microcline-magnetite, and clinopyroxene-albite) was studied using back-scattered scanning electron microscopy. Chevkinite occurs only in quartz-albite-microline metasomatic rock. The paragenesis of allanite and titanite is stable in clinopyroxene-albite metasomatic rocks. Allanite and fergusonite are typical of all zones of the metasomatic column. Chevkinite and allanite are often altered due to interaction with hydrothermal fluid and lose some amount of LREE. Secondary bastnaesite, synchysite, and ancylite are formed after allanite, while secondary monazite is developed after chevkinite. Presumably, the low-temperature alteration of allanite and chevkinite under effect of F?, CO 3 2? , and P 4 3? -bearing fluids had not any significant manifestation in the total REE content in metasomatic rocks.  相似文献   

13.
Numerous Fe–Cu deposits in southwestern China form the Kangdian Iron-Oxide Copper-Gold (IOCG) metallogenic Province. These deposits have a close association of Fe-oxides and Cu-sulfides formed at different stages, which are possibly related to multiple hydrothermal events. In this paper, U–Pb dating and chemical analyses on allanite from different stages of the Lala deposit were used to constrain timing and origin of such events. Allanite occurs as disseminated grains or patches in Fe–Cu ores and is closely associated with chalcopyrite, molybdenite, calcite and minor titanite, postdating magnetite and apatite. High-resolution backscattered electronic (BSE) imaging, electron microprobe compositions and X-ray scanning profiles demonstrate that REE-rich primary allanite was replaced by later, relatively porous and REE-poor secondary allanite. Such a replacement was promoted by interaction between primary allanite and fluid fluxes infiltrating the minerals, following an exchange scheme of REE3+ + Fe2+ → Ca2+ + Al3+. The secondary allanite has higher Fe3+/(Fe3++Fe2+) ratios and U contents, indicating involvement of relatively oxidized fluids during alteration. The alteration has also produced unidentified secondary REE minerals in fractures, indicating re-deposition of some of the removed REEs. The primary and secondary allanites are dated by in situ LA-ICP-MS technique and have U–Pb ages of 1,067 ± 41 Ma and 880–850 Ma, respectively. The ~1.07 Ga primary allanite was contemporaneous with the main Mo–Cu–LREE mineralization with a molybdenite Re–Os age of ~1.08 Ga. The 880–850 Ma secondary allanite is comparable with the Ar–Ar ages (890–830 Ma) of biotite from hosting schists and undeformed sulfide veins occurring throughout the Kangdian Province, suggesting that such an event was possibly syn-deformational and represents a younger hydrothermal event. Occurrences of both primary and secondary allanites suggest that the mineralization may have involved multiple tectonothermal events including the ~1.05–1.1 Ga intra-plate and subsequent 960–740 Ma arc magmatism in the Kangdian region.  相似文献   

14.
The distribution of rare earth elements (REE) within the compositionallyzoned Dartmoor pluton is used to constrain models of graniteevolution and to assess the effects of pervasive hydrothermalalteration on REE mobility. The main process of magma evolutionwas crystal fractionation of early plagioclase, biotite, andaccessory minerals (apatite, monazite, zircon, and xenotime).Concentrations of REE (particularly LREE and Eu) and other elements(Fe2O3t, MgO, CaO, TiO2, Zr, Ba, and Sr) decrease strongly withevolution of the pluton from 71 to 74% SiO2. These trends, andthe inward zoning of the pluton, are compatible with differentiationby crystal fractionation at the level of emplacement, a processthat gave rise to a marginal cumulate granite (CGM) modifiedby country rock assimilation, a body of inner granite (PM),and a late-stage evolved granite (FG) that intruded the earliertypes. REE modelling of the Dartmoor granite types by fractionalcrystallization of REE-enriched accessory minerals from a parentPM-granite shows that the FG-granite cannot have formed froma residual liquid left by crystallization of the CGM-granite.Two discrete stages of crystallization occurred; side-wall cumulateCGM-granite crystallization dominated by LREE-en-riched monazitefractionation followed by a late-stage mobile residual FG-granitein which fractionation was dominated by HREE-enriched apatiteand zircon. Modelling supports the idea that large-scale assimilationof country rock was not the dominant process during Dartmoorgranite evolution. Pervasive hydrothermal alteration locally affected all Dartmoorgranite types, altering primary plagioclase, biotite, apatite,monazite, and, to a lesser extent, zircon and xenotime. Duringpervasive sericitization, chloritization, and tourmalinization,REE were mobilized over distances of centimetres only and redistributedinto the secondary alteration products seridte, chlorite, tourmaline,allanite, and sphene. Whole-rock REE abundances were not affected  相似文献   

15.
Concern about security of supply of critical elements used in new technologies, such as the Rare Earth Elements (REE), means that it is increasingly important to understand the processes by which they are enriched in crustal settings. High REE contents are found in syenite-dominated alkaline complexes intruded along the Moine Thrust Zone, a major collisional zone in north-west Scotland. The most northerly of these is the Loch Loyal Syenite Complex, which comprises three separate intrusions. One of these, the Cnoc nan Cuilean intrusion, contains two mappable zones: a Mixed Syenite Zone in which mafic melasyenite is mixed and mingled with leucosyenite and a Massive Leucosyenite Zone. Within the Mixed Syenite Zone, hydrothermal activity is evident in the form of narrow altered veins dominated by biotite and magnetite; these are poorly exposed and their lateral extent is uncertain. The REE mineral allanite is relatively abundant in the melasyenite and is extremely enriched in the biotite–magnetite veins, which have up to 2 % total rare earth oxides in bulk rock analyses. An overall model for development of this intrusion can be divided into three episodes: (1) generation of a Light Rare Earth Element (LREE)-enriched parental magma due to enrichment of the mantle source by subduction of pelagic carbonates; (2) early crystallisation of allanite in melasyenite, due to the saturation of the magma in the LREE; and (3) hydrothermal alteration, in three different episodes identified by petrography and mineral chemistry, generating the intense enrichment of REE in the biotite–magnetite veins. Dating of allanite and titanite in the biotite–magnetite veins gives ages of c. 426 Ma, overlapping with previously published crystallisation ages for zircon in the syenite.  相似文献   

16.
A study of the distribution of lanthanide rare earths in a granodiorite from the eastern Peninsular Ranges batholith, southern California, reveals that a large fraction of the REE in this rock resides in the accessory phases sphene and allanite. The minerals plagioclase, alkali feldspar, biotite, epidote and apatite each contribute approximately 1% or less of each REE to the whole rock, with the exception of Eu for which plagioclase contributes 7%. Sphene and allanite together contain 80% to 95% of each REE. Each of these phases is zoned in REE concentration with substantial decreases from core to margin. Textural observations argue for relatively early saturation and precipitation of sphene and allanite in the magma. REE zoning trends in sphene and allanite, and unexpectedly low REE concentrations in largely later crystallizing minerals such as feldspar, indicate that the precipitation of sphene and allanite significantly reduced REE concentrations in residual melts. These results illustrate the potential that sphene and allanite have for controlling the behavior of REE in granitic magmas.Available information collectively suggest that the sampled granodiorite existed as a complete melt, that the REE contained in the assemblage of phases were derived by direct crystallization from the melt, and that the melt behaved essentially as a closed system once crystallization of the phases now present began. Close correspondences between the major and trace element chemistries of the granodiorite and phenocryst-poor lavas from similar tectonic settings support these conclusions. The REE pattern of the granodiorite melt appears to have originated at depth and is characteristic of its source regions and derivation mechanism. The high liquidus temperature of a granodiorite melt (~ 1000°C) indicates the importance of mantle-derived components within the sources of batholithic magmas in the Peninsular Ranges.  相似文献   

17.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   

18.
赵芝  王登红  潘华  屈文俊 《地球科学》2017,42(10):1697-1706
为了解风化壳中离子交换相稀土元素的特征,对广西某地花岗岩风化壳剖面样品进行了X射线衍射及主量、稀土元素地球化学特征的研究.剖面自上而下可划分为腐殖土层(A1)、亚粘土层(A2)、网纹状风化层(B1)和全风化层(B2);自A1至B2,粘土矿物的含量和化学风化蚀变指数快速降低;与母岩相比A1、A2、B1中全相Ce、Nd和HREE相对富集,B2中全相稀土与母岩特征相似,所有样品的离子交换相HREE亏损,Y相对富集;离子交换相轻、重稀土一起富集在B2中.据此推测,花岗岩中褐帘石、榍石等易风化的稀土矿物为离子交换相稀土提供了主要的物源,锆石、磷钇矿等难风化的稀土矿物的残留及表生稀土矿物的形成使全相HREE相对富集;离子交换相轻、重稀土元素的分馏程度随风化程度的增加而变化.   相似文献   

19.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   

20.
Primary igneous monazite from the Polokongka La granite of the Tso Morari complex in the western Himalayas has been partially replaced by a three-layered corona of metamorphic fluor-apatite, allanite + U- and Th-bearing phases (huttonite + brabantite), and epidote. The alteration is related to high-pressure amphibolite-facies (10–11 kbar and 587–695 °C) fluid-induced retrogression of the ultra-high-pressure granite during exhumation after India–Asia collision. The corona textures can be explained by pseudomorphic partial replacement of the original monazite to apatite and allanite via a fluid-mediated coupled dissolution–reprecipitation process. Mass balance calculations using the volume proportions and compositions of coronal minerals show that the REE, U, Th, Pb, Ba and P were conserved and not transported outside the alteration corona. The formation of fluor-apatite, allanite, huttonite and coffinite from monazite and the immobility of REE, U and Th require an influx of alkali- and F-bearing, Ca-rich fluid having high Ca/Na into the corona. We are aware of only two other occurrences of such alteration textures, and these have several similarities in terms of geodynamic setting and P–T histories of the host rocks. We suggest that there may be a common mechanism of exhumation style, and source and composition of fluids during retrogression of granitoid rocks in collisional orogens and that such breakdown textures can be used to identify metagranites that have experienced high-P metamorphism in continental collision zones, which is otherwise difficult to constrain due to the high variance of the mineral assemblages in these rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号