首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present the results of Rayleigh wave and Love wave phase velocity tomography in the western United States using ambient seismic noise observed at over 250 broad-band stations from the EarthScope/USArray Transportable Array and regional networks. All available three-component time-series for the 12-month span between 2005 November 1 and 2006 October 31 have been cross-correlated to yield estimated empirical Rayleigh and Love wave Green's functions. The Love wave signals were observed with higher average signal-to-noise ratio (SNR) than Rayleigh wave signals and hence cannot be fully explained by the scattering of Rayleigh waves. Phase velocity dispersion curves for both Rayleigh and Love waves between 5 and 40 speriod were measured for each interstation path by applying frequency–time analysis. The average uncertainty and systematic bias of the measurements are estimated using a method based on analysing thousands of nearly linearly aligned station-triplets. We find that empirical Green's functions can be estimated accurately from the negative time derivative of the symmetric component ambient noise cross-correlation without explicit knowledge of the source distribution. The average traveltime uncertainty is less than 1 s at periods shorter than 24 s. We present Rayleigh and Love wave phase speed maps at periods of 8, 12, 16,and 20 s. The maps show clear correlations with major geological structures and qualitative agreement with previous results based on Rayleigh wave group speeds.  相似文献   

2.
Summary. A connection is established between the group velocity of Rayleigh waves, the spectral amplitudes of surface waves generated by a source, and the resonance of vertically travelling P waves. It implies that a minimum in a group velocity curve is reflected in the spectral amplitudes as a maximum. That this is so, appears to have been first noticed by Longuet-Higgins in a study of microseisms. Also when a sharp impedance contrast occurs in a plane-layered model of the crust, the group velocity minimum in the fundamental mode occurs close to a period equal to four times the travel time of P -waves from the surface to the interface. More than one such contrast gives rise in general to more than one minimum. Similar relations hold for the higher modes.  相似文献   

3.
Summary Of the waves which propagate in the atmosphere at acoustic velocity in the period range from 10 to 100 s, one type has been classified by triangulation as arising principally from mountainous regions. These signals were first described as 'northwesters' or '310 ers' by the NBS Geoacoustics Group under R. K. Cook at Washington, D.C., from the predominant direction of arrival. Subsequent operation of an observatory at Boulder, Colorado by Vernon Goerke gave a source region by triangulation in the Pacific Northwest, primarily in Montana and Alberta. Installations of observatories at College, Alaska (Wilson) and Pullman, Washington-Moscow, Idaho (Craine and Thomas) enlarged the data base available, and triangulation showed the principal source areas to be along the coast of British Columbia and in the inland Rocky Mountains of the British Columbia-Alberta border. This paper discusses the presently known characteristics of this class of infrasonic waves, locates the triangulation areas, reviews selected events, and suggests that certain of these waves are produced as aerodynamic sound. The paper shows a correlation between the 500 mb jet stream velocity and direction in these mountainous regions, and the detection of these atmospheric pressure waves.  相似文献   

4.
Finite-frequency sensitivity kernels for head waves   总被引:2,自引:0,他引:2  
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana–doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.  相似文献   

5.
i
Displacements of Love waves generated by a two-dimensional point source in a layered medium have been studied earlier by Sezawa & Sato by the method of successive reflections at the boundaries. In this paper the same problem has been worked out by using Green's function. The paper deals with the study of attenuation of Love waves of low periods in the coastal region. Experimental observations show that Love waves of smaller periods can be obtained only in the island observing stations. A slight intervention of the continental boundary is sufficient to attenuate lower period Love waves giving a hint thereby that attenuation of lower periods takes place perhaps at the continental margin. Taking a simplified configuration for the continental boundary and using Green's function technique, the displacement of Love waves due to a point source has been obtained and it has been shown that attenuation of Love waves of smaller periods takes place in the continental margin due to the slope of the boundary.  相似文献   

6.
Summary. The usual asymptotic methods used to correct the high-frequency solutions of the wave equation are unsatisfactory as they do not give the low-frequency, partial reflections expected from a region of high velocity gradient. A new iterative solution is obtained which uses the first term of the Langer asymptotic expansion as the zeroth iterate. This satisfactorily gives the partial reflections from a region of high velocity gradient, even when they are generated near the turning point of the ray. Although the results are somewhat complicated in the frequency domain, in the time domain all types of wave interaction are described by six universal time functions. For any problem, these functions are scaled in time according to the depth of the interaction, and in strength according to the magnitude of the coupling parameter. Numerical results and approximations are given for these functions. Coupling parameters are investigated for acoustic and elastic waves in a plane model, and acoustic and elastic-gravitational waves in a spherical model. The same universal time functions allow the excitation of elastic waves to be studied when the source is in a region of high velocity gradient or is near the wave's turning point. Results are given for a moment tensor, point source in plane and spherical models.  相似文献   

7.
We present new methods for the interpretation of 3-D seismic wide-angle reflection and refraction data with application to data acquired during the experiments CELEBRATION, 2000 and ALP 2002 in the area of the Eastern Alps and their transition to the surrounding tectonic provinces (Bohemian Massif, Carpathians, Pannonian domain, Dinarides). Data was acquired on a net of arbitrarily oriented seismic lines by simultaneous recording on all lines of seismic waves from the shots, which allows 2-D and 3-D interpretations. Much (80%) of the data set consists of crossline traces. Low signal to noise (S/N) ratio in the area of the young orogens decreases the quality of travel time picks. In these seismically heterogeneous areas it is difficult to assign clearly defined arrivals to the seismic phases, in particular on crossline record sections.
In order to enhance the S/N ratio, signal detection and stacking techniques have been applied to enhance the Pg -, Pn - and PmP phases. Further, inversion methods have been developed for the interpretation of WAR/R-data, based on automated 1-D inversion ( Pg ) and the application of the delay time concept ( Pn ). The results include a 3-D velocity model of the crust based on Pg waves, time and depth maps of the Moho and a Pn -velocity map. The models based on stacked data are robust and provide a larger coverage, than models based on travel time picks from single-fold (unstacked) traces, but have relatively low resolution, especially near the surface. They were used as the basis for constructing models with improved resolution by the inversion of picks from single-fold data. The results correlate well with geological structures and show new prominent features in the Eastern Alps area and their surrounds. The velocity distribution in the crust has strong lateral variations and the Moho in the investigation area appears to be fragmented into three parts.  相似文献   

8.
The purpose of this study is to develop a technique to discriminate artificial explosions from local small earthquakes ( M ≤ 4.0) in the time–frequency domain. In order to obtain spectral features of artificial explosions and earthquakes, 3-D spectrograms (frequency, time and amplitude) have been used. They represent a useful tool for studying the frequency content of entire seismic waveforms observed at local and regional distances (Kim, Simpson & Richards 1994). P and S(L g ) waves from quarry blasts show that the frequency content associated with the dominant amplitude appears above 10  Hz and Rg phases are observed at close distances. P and S(L g ) waves from the Tongosan earthquake have strong amplitudes below 10  Hz. For the Munkyong earthquake, however, a broader frequency content up to 20  Hz is found.
  For discrimination between small earthquakes and explosions, Pg/L g spectral ratios are used below 10  Hz, and through spectrogram analysis we can see different frequency contents of explosions and earthquakes. Unfortunately, because explosion data recorded at KSRS array are digitized at 20  sps, we cannot avoid analysing below 10  Hz because of the Nyquist frequency. In order to select time windows, the group velocity was computed using multiple-filter analysis (MFA), and free-surface effects have been removed from all three-component data in order to improve data quality. Using FFT, a log-average spectral amplitude is calculated over seven frequency bands: 0.5 to 3, 2 to 4, 3 to 5, 4 to 6, 5 to 7, 6 to 8 and 8 to 10  Hz. The best separation between explosions and earthquakes is observed from 6 to 8  Hz. In this frequency band we can separate explosions with log ( Pg/L g ) above −0.5, except EXP1 recorded at SIHY1-1, and earthquakes below −0.5, except the Munkyong earthquake record at station KMH.  相似文献   

9.
Summary. A variety of near-regional (300 km) data, including spectral amplitudes of Pg , surface-wave forms, and close-in (5–10 km) accelerograms have been used to build an elastic seismic source model for a 1-Mton explosion in tuff at near-regional distances. The model consists of: (1) a pressure pulse which injects 3 × 1012 cm3 of volume into the medium, (2) a vertical, upward force impulse that imparts 1018 dyn-s of momentum to the medium, each source component having a time duration of 0.6 s and a depth of 1.3 km. The force impulse appears to be required by two considerations: (a) the striking similarity, apart from sign, of explosion surface waves with those of their cavity collapses, (b) the observation of considerable SV energy leaving the source of the 1-Mton explosions JORUM and HANDLEY . Scaling curves have been constructed which fit the proposed source model. These scaling curves employ: very slow decrease, as (yield)−0.10 of the primary corner frequency; decay as (frequency)4 or (frequency)3 to high frequency. While these scaling curves are unconventional, they appear to be the only ones which can satisfy the near-regional data. The slow scaling with yield of the spectral carner frequency suggests that it is caused by something other than the equivalent elastic radius, e.g. the time duration of motion at the source. The results, at odds with similar studies at teleseismic distances, suggest that significantly different equivalent elastic sources are required at near-regional (as compared with teleseismic) distances; therefore, the effect of the upward impulse might not be seen at teleseismic distances. Consequently, these results probably do not pertain to the seismic discrimination problem at teleseismic distances.  相似文献   

10.
A lower mantle S-wave triplication and the shear velocity structure of D"   总被引:6,自引:0,他引:6  
Summary. A lower mantle S-wave triplication detected with short- and long-period WWSSN and CSN recordings indicates a substantial shear velocity discontinuity near 280 km above the core–mantle boundary. The triplication can be observed in rotated SH seismograms from intermediate and deep focus events throughout the distance range from 70° to 95°. Three distinct source region–receiver array combinations that have been investigated in detail demonstrate consistent travel time and relative amplitude behaviour of the triplication, with slight systematic shifts in the triplication indicating up to 40 km variations in the depth of the discontinuity. Modelling of the observations with synthetic seismograms produced with the Cagniard de Hoop and reflectivity methods constrains the shear velocity increase to be 235 ± 0.25 per cent, comparable to upper mantle discontinuities. Short-period observations indicate that the velocity increase may be a sharp first-order discontinuity, or may extend over a transition zone no more than 50 km thick. The shear velocity gradient below the discontinuity, within the D" layer, is not well-constrained by the SH data, but slightly positive or near zero velocity gradients are consistent with the long-period amplitude ratios of ScSH/SH .  相似文献   

11.
Summary. This paper extends an earlier study (Sengupta & Julian) of travel times of P waves of deep-focus earthquakes to include shear waves. Primary advantage of deep-focus earthquakes is the reduction of anomalies caused by complex structures near the source. The standard deviations of travel times and station anomalies of this study are about half as large as those determined from the data of shallow-focus earthquakes (e.g. Herrin et al.; Hales & Roberts). Spherically-symmetric velocity models derived from the travel times by a linearized inverse technique have resolving lengths of about 70 km for standard errors in velocity of about 0.02 km/s. No pronounced reversal of either compressional or shear velocity was required at the base of the mantle to satisfy the data, though a small velocity decrease could not be entirely ruled out. Some anomalous rapid changes in compressional velocity gradient were, however, found centred around the depths of 2400 and 2600 km. The models derived in this study agree most closely with that of Herrin et al . for compressional velocity and the model 1066B of Gilbert & Dziewonski for shear velocity.  相似文献   

12.
Thermochronological analysis of detrital sediments derived from the erosion of mountain belts and contained in the sedimentary basins surrounding them allows reconstructing the long-term exhumation history of the sediment source areas. The effective closure temperature of the thermochronological system analysed determines the spatial and temporal resolution of the analysis through the duration of the lag time between closure of the system during exhumation and its deposition in the sedimentary basin. Here, we report apatite fission-track (AFT) data from 31 detrital samples collected from Miocene to Pliocene stratigraphic sections of the Siwalik Group in western and central Nepal, as well as three samples from modern river sediments from the same area, that complement detrital zircon fission-track (ZFT) and U–Pb data from the same samples presented in a companion paper. Samples from the upper part of the stratigraphic sections are unreset and retain a signal of source-area exhumation; they show spatial variations in source-area exhumation rates that are not picked up by the higher-temperature systems. More deeply buried samples have been partially reset within the Siwalik basin and provide constraints on the thermal and kinematic history of the fold-and-thrust belt itself. The results suggest that peak source-area exhumation rates have been constant at ∼1.8 km Myr−1 over the last ∼7 Ma in central Nepal, whereas they ranged between 1 and ∼1.5 km Myr−1 in western Nepal over the same time interval; these spatial variations may be explained by either a tectonic or climatic control on exhumation rates, or possibly a combination of the two. Increasing lag times within the uppermost part of the sections suggest an increasing component of apatites that have been recycled within the Siwalik belt and are corroborated by AFT ages of modern river sediment downstream as well as the record of the distal Bengal Fan. The most deeply buried and most strongly annealed samples record onset of exhumation of the frontal Siwaliks along the Himalayan frontal thrust at ∼2 Ma and continuous shortening at rates comparable with the present-day shortening rates from at least 0.3 Ma onward.  相似文献   

13.
14.
It is well established that the Earth's uppermost mantle is anisotropic, but there are no clear observations of anisotropy in the deeper parts of the mantle. Surface waves are well suited to observe anisotropy since they carry information about both radial and azimuthal anisotropy. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in the first few hundred kilometres, and therefore, do not provide information on anisotropy below. Higher mode surface waves have sensitivities that extend to and beyond the transition zone, and should thus give insight about azimuthal anisotropy at greater depths. We have measured higher mode Love and Rayleigh phase velocities using a model space search approach, which provides us with consistent relative uncertainties from measurement to measurement and from mode to mode. From these phase velocity measurements, we constructed global anisotropic phase velocity maps. Prior to inversion, we determine the optimum relative weighting for anisotropy. We present global azimuthal phase velocity maps for higher mode Rayleigh waves (up to the sixth higher mode) and Love waves (up to the fifth higher mode) with corresponding average model uncertainties. The anisotropy we derive is robust within the uncertainties for all modes. Given the ray theoretical sensitivity kernels of Rayleigh and Love wave modes, the source of anisotropy is complex, but mainly located in the asthenosphere and deeper. Our models show a good correspondence with other studies for the fundamental mode, but we have been able to achieve higher resolution.  相似文献   

15.
Summary. Dynamical rupture process on the fault is investigated in a quasi-three-dimensional faulting model with non-uniform distributions of static frictions or the fracture strength under a finite shearing pre-stress. The displacement and stress time functions on the fault are obtained by solving numerically the equations of motion with a finite stress—fracture criterion, using the finite difference method.
If static frictions are homogeneous or weakly non-uniform, the rupture propagates nearly elliptically with a velocity close to that of P waves along the direction of pre-stress and with a nearly S wave velocity in the direction perpendicular to it. The rise time of the source function and the final displacements are larger around the centre of the fault. In the case when the static frictions are heavily non-uniform and depend on the location, the rupture propagation becomes quite irregular with appreciably decreased velocities, indicating remarkable stick-slip phenomena. In some cases, there remain unruptured regions where fault slip does not take place, and high stresses remain concentrated up to the final stage. These regions could be the source of aftershocks at a next stage.
The stick—slip faulting and irregular rupture propagation radiate high-frequency seismic waves, and the near-field spectral amplitudes tend to show an inversely linear frequency dependence over high frequencies for heavily non-uniform frictional faults.  相似文献   

16.
About 50 000 P and S arrival times and 25 000 values of t * recorded at seismic arrays operated in the Central Andes between 20°S and 25°S in the time period from 1994 to 1997 have been used for locating more than 1500 deep and crustal earthquakes and creating 3-D P , S velocity and Qp models. The study volume in the reference model is subdivided into three domains: slab, continental crust and mantle wedge. A starting velocity distribution in each domain is set from a priori information: in the crust it is based on the controlled sources seismic studies; in slab and mantle wedge it is defined using relations between P and S velocities, temperature and composition given by mineral physics. Each iteration of tomographic inversion consists of the following steps: (1) absolute location of sources in 3-D velocity model using P and S arrival times; (2) double-difference relocation of the sources and (3) simultaneous determination of P and S velocity anomalies, P and S station corrections and source parameters by inverting one matrix. Velocity parameters are computed in a mesh with the density of nodes proportional to the ray density with double-sided nodes at the domain boundaries. The next iteration is repeated with the updated velocity model and source parameters obtained at the previous step. Different tests aimed at checking the reliability of the obtained velocity models are presented. In addition, we present the results of inversion for Vp and Vp/Vs parameters, which appear to be practically equivalent to Vp and Vs inversion. A separate inversion for Qp has been performed using the ray paths and source locations in the final velocity model. The resulting Vp , Vs and Qp distributions show complicated, essentially 3-D structure in the lithosphere and asthenosphere. P and S velocities appear to be well correlated, suggesting the important role of variations of composition, temperature, water content and degree of partial melting.  相似文献   

17.
Summary. The three-dimensional seismic structure of the Mont Dore volcano is studied by inversion of the arrival times of seismic waves. With this aim two new methods are developed. First, the arrival times are those of Moho-reflected waves at a critical distance from artificial sources in different azimuths. Secondly, the inversion uses a technique which does not require the traditional a priori partition of the space into blocks. The resulting picture reveals such features as: (1) a circular caldera within the basement, the rim of which is marked by magnetic anomalies associated with post-caldera activity; (2) a clear lower limit of the volcano-sedimentary sequence under part of the caldera, opposed to low velocity anomalies extending deeper beneath another part and which may have been the site of volcanic material transport, and (3) eeper heterogeneities possibly related to foundered basement blocks.  相似文献   

18.
Summary The coherence of atmospheric acoustic-gravity waves has been measured in the period range 10–100 s at the Large Aperture Microbarograph Array in south-eastern Montana. The acoustic-gravity waves observed were signals generated by presumed nuclear explosions. The decrease of coherence with increasing distance between pairs of microbarographs is less rapid in the direction of wave propagation than transverse to it. Variation of direction of arrival over a small range of azimuth (±5°) explains the spatial behaviour of coherence in the direction normal to the wave propagation; variation of phase velocity of ±10 ms-1 explains the behaviour along the direction of wave propagation. Both effects may be due to inhomogeneities in the atmosphere; the velocity variation may be due to the presence in the signal of several normal modes of acoustic- gravity waves, each travelling at a slightly different phase velocity in the range 300–330 ms-1.  相似文献   

19.
Summary. The propagation of a pulsed elastic wave in the following geometry is considered. An elastic half-space has a surface layer of a different material and the layer furthermore contains a bounded 3-D inhomogeneity. The exciting source is an explosion, modelled as an isotropic pressure point source with Gaussian behaviour in time.
The time-harmonic problem is solved using the null field approach (the T matrix method), and a frequency integral then gives the time-domain response. The main tools of the null field approach are integral representations containing the free space Green's dyadic, expansions in plane and spherical vector wave functions, and transformations between plane and spherical vector wave functions. It should be noted that the null field approach gives the solution to the full elastodynamic equations with, in principle, an arbitrarily high accuracy. Thus no ray approximations or the like are used. The main numerical limitation is that only low and intermediate frequencies, in the sense that the diameter of the inhomogeneity can only be a few wavelengths, can be considered.
The numerical examples show synthetic seismograms consisting of data from 15 observation points at increasing distances from the source. The normal component of the velocity field is computed and the anomalous field due to the inhomogeneity is sometimes shown separately. The shape of the inhomogeneity, the location and depth of the source, and the material parameters are all varied to illustrate the relative importance of the various parameters. Several specific wave types can be identified in the seismograms: Rayleigh waves, direct and reflected P -waves, and head waves.  相似文献   

20.
Shear-wave polarizations on a curved wavefront at an isotropic free surface   总被引:12,自引:0,他引:12  
Summary. We present polarization diagrams of the particle motions at the free surface of an isotropic half-space generated by incident shear waves from a local buried point source. The reflectivity technique is used to calculate synthetic seismograms from which the particle motions are plotted. The particle motions are examined over a range of epicentral distances in a uniform isotropic half-space for different source frequencies and polarization angles, and for different Poisson's ratios. The particle motions due to a curved wavefront possess different characteristics from those generated by plane wavefronts at corresponding incidence angles. A curved wavefront generates a local SP -phase: a P -headwave which propagates along the free surface, and arrives shortly before the direct S -wave. These two arrivals give rise to cruciform particle motions in the sagittal and horizontal planes, which could be misinterpreted as anisotropy-induced shear-wave splitting. An examination of the particle motion in the transverse plane, mutually orthogonal to the sagittal and horizontal planes, can be used to discriminate between isotropic and anisotropic interpretations. The amplitude of the SP -phase is enhanced when it propagates in a low-velocity surface layer overlying the source layer, and may then become the dominant phase on radial-component seismograms. The presence of even a single surface layer may introduce considerable complexity into the seismogram, and we examine the effects of layer thickness, velocity contrast, and source depth on the corresponding polarization diagrams. Reliable information on the source and propagation path characteristics of shear waves from a buried local point source can only be obtained from free-surface records if they are recorded within a very limited epicentral distance range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号