首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of stable isotopes is a practical tool in the study of the lake water budget. This is an one way to study the hydrological cycle in the large numbers of inland lakes on the Tibetan Plateau, in which the isotope record of the sediment is believed to reflect the climatic and environmental changes. The monitoring of stable isotopes of the precipitation, river and lake waters during 2004 in the inland Yamdruk‐tso basin, southern Tibetan Plateau, reveals the lake water δ18O is over 10‰ higher than the local precipitation. This high difference indicates strong isotope enrichment due to lake water evaporation. The simulation results based on the isotope technique show that the present lake water δ18O level corresponds to an average relative humidity of around 54–58% during evaporation, which is very close to the instrumental observation. The simulation results also show that the inland lakes on the Tibetan Plateau have a strong adjustability to the isotope shift of input water δ18O. On average, the isotope component in the inland lake water is to a large extent controlled by the local relative humidity, and can also be impacted by a shift of the local precipitation isotope component. This is probably responsible for the large consistence in the isotope component in the extensive inland lakes on the Tibetan Plateau. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The surface water and groundwater are important components of water cycle, and the interaction between surface water and groundwater is the important part in water cycle research. As the effective tracers in water cycle research, environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively. The study area is the Huaisha River basin, which is located in Huairou district, Beijing. The field surveying and sampling for spring, river and well water were finished in 2002 and 2003. The hydrogen and oxygen isotopes and water quality were measured at the laboratory. The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed. The altitude effect of oxygen isotope in springs was revealed, and then using this equation, theory foundation for deducing recharge source of spring was estimated. By applying the mass balance method, the annual mean groundwater recharge rate at the catchment was estimated. Based on the groundwater recharge analysis, combining the hydrogeological condition analysis, and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin, part of the runoff in the Huaisha River basin is recharged outside of this basin, in other words, this basin is an un-enclosed basin. On the basis of synthetically analyses, combining the compositions of hydrogen and oxygen isotopes and hydrochemistry, geomorphology, geology, and watershed systems characteristics, the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated, and the interaction between surface water and groundwater was re- vealed lastly.  相似文献   

3.
4.
In arid to semi-arid regions, groundwater is a critical water resource heavily relied upon, with the recharge sources and patterns being predominantly shaped by climate change and regional disparities. To compare the characteristics of groundwater in the endorheic and exorheic river basins with the climate transition zone of Gansu Province, this study uses isotopic hydrochemical analyses. This study summarizes the differences in regional groundwater recharge and evolutionary patterns. The results shows that the distribution patterns of precipitation isotopes in endorheic and exorheic river basins are opposite to those of groundwater isotopes. Specifically, the precipitation in the endorheic areas is more depleted in heavy isotopes, whereas the groundwater is more enriched. Both endorheic areas and exorheic areas exhibit similar characteristics of groundwater hydrochemical evolution, evolving from low-mineralization Mg2+ HC O 3 recharge water to Na+ Cl type water with saline characteristics. The former is primarily replenished by surface water, whereas the latter is primarily replenished by precipitation. Variations in recharge patterns along with the differences in climatic conditions lead to distinct groundwater conditions in the two regions.  相似文献   

5.
在地震地下流体研究中,地下水补给及循环过程是重要的研究内容之一,氢氧同位素示踪技术是目前研究该过程的常用手段。南昌地震台流体观测井自2013年8月22日投入观测以来,其基础数据未进行有效分析,通过对南昌井水样数据进行氢氧同位素及水化学实验分析,结果表明:井水主要补给源为直接大气降雨,补给前经历了一定蒸发作用;水—岩反应不充分,属于未成熟水;水样中无明显优势阳离子,Ca2+、Na+占主体,优势阴离子为HCO3,表明井水属重碳酸型水;水源补给高程约582 m。南昌地震台流体观测井总体受大气降水影响较大。  相似文献   

6.
Brinck EL  Frost CD 《Ground water》2007,45(5):554-568
Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the aquifer from which water originates. In this study, CBNG water was found to have a higher (87)Sr/(86)Sr ratio than the local alluvial aquifer water. This measurable difference allows the strontium isotope ratio and concentration to be used as tracers of CBNG water following its discharge to the surface. The dissolution and mobilization of salts from soil are an important contributor to ground water quality degradation. In the Powder River basin of Wyoming, the soils are calcium carbonate-buffered systems. The chemical similarity of strontium to calcium allows it to substitute into calcium minerals and enabled us to use strontium isotopes to identify calcium salts mobilized from the soil. Strontium isotopes are an effective monitor of the source of ions and the volume and direction of introduced water flow in the hyporheic zone.  相似文献   

7.
8.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Based on the stable isotope composition in 15N and 13C of different potential sources of organic matter and consumers of an intertidal Zostera marina meadow located in San Simón Bay (Ría de Vigo, NW of Spain), a simplified food web of this community was reconstructed. For this purpose, some alternatives in different steps of the most used methodology of stable isotope dietary analysis were developed that cope with some of the limitations associated to the interpretation of isotopic signals for food web analysis, those of uncertainty on the fractionation value, mathematical model to use for the diet resolution and shortage of the isotope number for discriminating many food sources. The application of this protocol to the studied community reported similar results to those from other studies based on similar trophic webs, emphasizing the importance of local primary producers, especially microphytobenthos, which could be available for several primary consumers through resuspension forced by tidal hydrodynamic. The good agreement with previous results suggests that the proposed protocol is a feasible alternative to elucidate the most plausible trophic relationships in complex trophic webs using stable isotopes analysis.  相似文献   

10.
NH4 is the most common form of nitrogen found in rocks and may substitute for K in potas-sic minerals such as biotite, muscovite, and K-feldspar[1,2]. N2 has been observed in fluid inclu-sions, and thermodynamic calculations suggest that N2 is the most c…  相似文献   

11.
Stable isotopes of carbon and nitrogen are increasingly used in marine ecosystems, for ecological and environmental studies. Here, we examine some applications of stable isotopes as ecological integrators or tracers in seagrass ecosystem studies. We focus on both the use of natural isotope abundance as food web integrators or environmental tracers and on the use of stable isotopes as experimental tools. As ecosystem integrators, stable isotopes have helped to elucidate the general structure of trophic webs in temperate, Mediterranean and tropical seagrass ecosystems. As environmental tracers, stable isotopes have proven their utility in sewage impact measuring and mapping. However, to make such environmental studies more comprehensible, future works on understanding of basic reasons for variations of N and C stable isotopes in seagrasses should be encouraged. At least, as experimental tracers, stable isotopes allow the study of many aspects of N and C cycles at the scale of a plant or at the scale of the seagrass ecosystem.  相似文献   

12.
The investigation of the regional flow characteristics of aquifers is important with respect to aquifer management. To determine regional flows, use can be made of hydraulic and hydrochemical data. In a study of a Chalk Aquifer System in the south of Lincolnshire, England, a combined hydrochemical approach using major, minor and isotope chemistry is described. The chemical data have been used because hydraulic information is difficult to interpret both locally and regionally as a consequence of multi-layered hydraulic zones, nonhomogeneous fissure zones, and variable erosional features. By characterizing ground-water types on the basis of major ion chemistry, and subsequently interrelating with minor ion distributions (notably iodide supported by strontium), a reasonable assessment of operative flow paths and mechanisms has been made. Substantiation of the conclusions reached using major and minor ion chemistry is provided by the environmental isotope data of carbon and tritium.  相似文献   

13.
Zircon is one of the most commonly used accessory minerals rich in U and Th for(U-Th)/He dating system. Compared with apatite, zircon has a higher He closure temperature (~190℃), which gives it more advantages in solving the problem of source material and thermal history reconstruction in sedimentary basins. However, the crystals of zircons often have U and Th zoning development, with obvious differences in concentration. Even the standard sample of FCT(Fish Canyon Tuff)zircon which is widely used in (U-Th)/He dating has an average age dispersion of about 10%. In this study, the Alphachron He isotope mass spectrometer is used for laser melting of a batch of single grains of FCT zircon(11 grains)to determine their 4He content. The contents of U and Th of parent isotopes are accurately determined by automatic injection of Agilent 7900 ICP-MS and isotope diluent method. The Th/U ratios of the 10 FCT zircons calculated with (U-Th)/He average age in this paper range from 0.52 to 0.67, which are consistent with the Th/U ratios of 186 reported so far. According to the Th/U ratios of 189 FCT zircons published in the statistical literature, we found that only three of them had high Th/U ratios, namely, 1.12, 1.16 and 1.5, the other 186 FCT zircons(occupy>98%) had a Th/U ratio less than 1. Based on previous results and the 10 Th/U ratios measured in this paper, 196 FCT zircons have a normal Th/U ratio ranging from 0.27 to 1.00, with an average ratio of 0.56(n=196). Excluding one abnormally old age, the(U-Th)/He ages of the remaining FCT zircons in this study range from 26.61 to 31.91Ma, with a weighted mean age of (28.8±3.1)Ma (2SD, n=10), which is consistent with the mean age ((28.3±3.1)Ma, 2σ, n=127) or (28.29±2.6)Ma(2σ external error, 9.3%, n=114)obtained by several other international laboratories. This indicates that the zircon single particle(U-Th)/He dating process established by our laboratory is reliable. For the zircon samples with U, Th banding and concentration differences prevailing, determining the distribution of U, Th elements in the crystal prior to the (U-Th)/He experiment is essential for understanding effects of geometry and elemental zoning on nuclear recoil and diffusion and the interpretation of (U-Th)/He age data.  相似文献   

14.
In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross‐section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near‐stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time‐scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream‐water exchange between the streams and extended hyporheic zones over long time‐scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11‰ D and 2·2‰ 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time‐scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (α) generally an order magnitude lower (10?5 s?1) than those determined using stream‐tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near‐stream zones of rapid stream‐water exchange, where ‘fast’ biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream‐water chemistry at longer time‐scales. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Groundwater is often a critical source of water for municipal, industrial and agricultural uses, especially in arid and semi‐arid environments. Songnen Plain, located in the central part of northeast China, is such a region, it being an important productive base of commodity grain in this country. In the past two decades, groundwater quality in the region, especially salinization, has deteriorated under natural changes and human activities, and has become a crucial factor restricting sustainable eco‐environmental and socio‐economic development. In this paper, The Taoer River catchment, situated in the middle of the region, was selected as the study area for the groundwater quality evolution study using hydrochemistry and stable isotopes to obtain a better understanding of the system. Fifty‐two groundwater samples were collected with systematic design during the low‐water and high‐water periods in 2003. A series of comprehensive quality data interpretations, e.g. statistics, ratios of ions and Piper diagrams, together with stable isotope data, have been used to gain an insight into the spatial and temporal variations and evolution laws of groundwater hydrochemistry. The following main hydrochemical processes were identified as controlling the water quality of the groundwater system: weathering–dissolution, evaporation–condensation, ion‐exchange reactions and groundwater salinization. This latter process, salinization, is the most important process and is caused by the leaching of superficial or near‐surface salts from the saline–alkaline soil into shallow groundwater. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This study presents a multiphase flow and multispecies reactive transport model for the simultaneous simulation of NAPL and groundwater flow, dissolution, and reactive transport with isotope fractionation, which can be used for better interpretation of NAPL-involved Compound Specific Isotope Analysis in 3D heterogeneous hydrogeologic systems. The model was verified for NAPL-aqueous phase equilibrium partitioning, aqueous phase multi-chain and multi-component reactive transport, and aqueous phase multi-component transport with isotope fractionation. Several illustrative examples are presented to investigate the effect of DNAPL spill rates, degradation rate constants, and enrichment factors on the temporal and spatial distribution of the isotope signatures of chlorinated aliphatic hydrocarbon groundwater plumes. The results clearly indicate that isotope signatures can be significantly different when considering multiphase flow within the source zone. A series of simulations indicate that degradation and isotope enrichment compete with dissolution to determine the isotope signatures in the source zone: isotope ratios remain the same as those of the source if dissolution dominates the reaction, while heavy isotopes are enriched in reactants along groundwater plume flow paths when degradation becomes dominant. It is also shown that NAPL composition can change from that of the injected source due to the partitioning of components between the aqueous and NAPL phases even when degradation is not allowed in NAPL phase. The three-dimensional simulation is presented to mechanistically illustrate the complexities in determining and interpreting the isotopic signatures with evolving DNAPL source architecture.  相似文献   

17.
Realistic projections of the future climate and how this translates to water availability is crucial for sustainable water resource management. However, data availability constrains the capacity to simulate streamflow and corresponding hydrological processes. Developing more robust hydrological models and methods that can circumvent the need for large amounts of hydro-climatic data is crucial to support water-related decisions, particularly in developing countries. In this study, we use natural isotope tracers in addition to hydro-climate data within a newly developed version of the spatially-distributed J2000iso as an isotope-enabled rainfall-runoff model simulating both water and stable isotope (δ2H) fluxes. We pilot the model for the humid tropical San Carlos catchment (2500 km2) in northeastern Costa Rica, which has limited time series, but spatially distributed data. The added benefit of simulating stable isotopes was assessed by comparing different amounts of observation data using three model calibration strategies (i) three streamflow gauges, (ii) three gauges with stream isotopes and (iii) isotopes only. The J2000iso achieved a streamflow Kling–Gupta efficiency (KGE) of 0.55–0.70 across all the models and gauges, but differences in hydrological process simulations emerged when including stable water isotopes in the rainfall-runoff calibration. Hydrological process simulation varied between the standard J2000 rainfall-runoff model with a high simulated surface runoff proportion of 37% as opposed to the isotope version with 84%–89% simulated baseflow or interflow. The model solutions that used only isotope data for calibration exhibited differences in simulated interflow, baseflow and model performance but captured bulk water balances with a reasonable match between the simulated and observed hydrographs. We conclude that J2000iso has shown the potential to support water balance modelling for ungauged catchments using stable isotope, satellite and global reanalysis data sets.  相似文献   

18.
We have measured annual oxygen and hydrogen isotope ratios in the α-cellulose of the latewood of oak (Quercus robur L.) growing on well-drained ground in Norfolk, UK. We compare the observed values of isotope ratios with those calculated using equations that allow for isotopic fractionation during the transfer of oxygen and hydrogen from source water taken by the tree to cellulose laid down in the cambium. The equations constitute a model in which isotopic fractionation occurs during evaporative enrichment within the leaf and during isotopic change between carbohydrates and water in the trunk during cellulose synthesis. From the relationship between isotope ratios in precipitation and α-cellulose, we deduce that the source water used by the tree comprises a constant mixture of groundwater and precipitation, chiefly from the months of May, June and July of the growth year. By selection of isotopic fractionation factors and the degree of isotope exchange within the trunk, we are able to model the observed annual values of oxygen isotope ratios of α-cellulose to a significant level (r=0.77, P<0.01). When we apply the same model to hydrogen isotope ratios, however, we find that, although we can predict the average value over the time series, we can no longer predict the year-to-year variation. We suggest that this loss of environmental signal in the hydrogen isotopes is caused by differences in the kinetic isotope effects of the biochemical reactions involved in the fixation of hydrogen in different positions of the glucose molecule. Owing to these effects, the hydrogen isotope ratios of cellulose can vary in a way not anticipated in current models and hence may induce non-climatic ‘noise’ in the hydrogen isotope time series.  相似文献   

19.
Lithium isotope fractionation in the southern Cascadia subduction zone   总被引:2,自引:0,他引:2  
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of δ7Li vary from + 0.9‰ to + 6.4‰ and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have δ7Li from + 2.8 to + 6.9‰ which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust.  相似文献   

20.
Intercomparison of soil pore water extraction methods for stable isotope analysis has been a focus of recent studies in relation to plant source waters, which found a wide isotopic variance depending on the extraction method. Few studies have yet explored extraction effects for mobile pore waters that relate to hillslope runoff. This is because it is extremely difficult in natural systems to control the boundary conditions in order to assess and compare impacts of pore water extraction on resulting hillslope flow. With our new semicontrolled experiments on outdoor mini‐hillslopes, we studied mixing and runoff processes by means of stable isotopes of water and quantified relations between pore water extraction methods. We tested the null hypothesis that nondestructive and destructive pore water sampling methods sample the same soil water pool. Three hillslopes were mounted on load cells, filled with loamy sand textured soils from the Landscape Evolution Observatoryat Biosphere 2, equipped with soil moisture and temperature sensors, a bottom outflow, and a surface runoff gauge for isotope sampling. We followed the precipitation isotopic composition over and through the soil profile. One hillslope was instrumented with suction cups, on the second we installed sampling ports for in‐situ soil water vapour measurements, and the third hillslope was sampled destructively for applying the centrifugation and vapour equilibrium methods. All hillslopes were sampled at four depths (0–10, 10–20, 20–30, and 30–40 cm) at three different downslope positions. 2H and 18O analyses were performed via laser spectroscopy. We found no isotopic differences between rainfall, surface runoff, and bottom outflow. The in situ vapour ports' soil isotope data showed the widest spread over all hillslope positions and depths. Centrifugation's and suction cups' isotope results plotted closest to the local meteoric water line and within the range of hillslope runoff and bottom outflow data. Hillslope position did not influence the soil isotope results. These results suggest caution be used in the field when selecting an extraction technique for matching soil waters to runoff waters. Soil suction lysimeters and centrifugation appeared to be the most appropriate tools in this regard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号