首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First results of the analysis of GPS measurement data obtained from 18 sites of two local networks in the vicinity of Ulaanbaatar (Mongolia) for the period 2010–2015 have been presented. Horizontal velocity vectors are consistent with each other in the ITRF2014 system and with the velocities of the IGS permanent station ULAB. The sites move in the E–SE direction at a rate of 25–30 mm/yr, with the displacement azimuth averaging 105°. With respect to Eurasia, the vectors for most of the sites are slighly turned to the south, but they are still of SE orientation with the azimuth range of 130°–150° and magnitude values of 2–4 mm/yr. Relative horizontal velocities tend to decrease towards southeast that determines a zonal distribution of different type of relative strain patterns. The western part of the Ulaanbaatar network is characterized by the W–E oriented extension with the elongation rate ε1 = 12–16 × 10–8 yr–1. The shortening NW–SE trending strain with calculated value ε2 = 22.4 × 10–8 yr–1 characterizes the network’s eastern part. The highest values of the maximum shear strains (εmax = 10–14 × 10–8 yr–1) form an extended area in the center of the testing ground, which is elongated in the northeastern direction, conformably with the strike of the major geologic structures. The strain distribution pattern of the Emeelt network located within the eponymous seismogenic structures is characterized by the crustal elongation (5 × 10–6 yr–1) trending SE–NW and less pronounced shortening in the SW–SE directions.The axial part of the fault crossing the network in the NW direction exhibits maximum deformations.  相似文献   

2.
3.
4.
Sakhalin Island is the only region in the Russian Far East where mud volcanism is manifested on land. The South Sakhalin mud volcano is located in the south of the island in the zone of the Central Sakhalin Fault (upthrow-thrust). The horizontal and vertical displacements of the earth’s surface after this mud volcano erupted in 2011 are revealed for the first time based on the GPS observation data. On the basis of the inversion of the measured displacements for the homogeneous elastic half-space, a model of the finite spherical eruption source is constructed. The coordinates, depth, and possible size of the source are defined and the volumes of the erupted clay rock, water, and gas are estimated.  相似文献   

5.
Following terrane amalgamation of early oceanic lithosphere, the southern and central parts of the Kaapvaal Craton were a coherent unit by 3.1 Ga. Juxta-position of the northern and western granitoid-greenstone terranes including the Murchison Island Arc was the result of terrane accretion that started at 3.1 Ga. The culmination of these events was the collision of the Kaapvaal Craton, the pre-cratonic Zimbabwe block and the Central Zone to generate the Limpopo granulite gneiss terrane. Coeval with these orogenic events the central Kaapvaal Craton underwent extension to accommodate the development of the Dominion, Witwatersrand/Pongola and Ventersdorp basins. The craton scale Thabazimbi-Murchison Lineament development during the 3.1 Ga accretion event and continued to influence the tectonic evolution of the Kaapvaal block throughout the period under review as indicated by the syn-sedimentary tectonics of the > 2.64 Ga Wolkberg Group, overlying Black Reef Formation and the Transvaal Sequence. The Transvaal and Griqualand West basins developed in the Late Archaean (> 2.55 Ga) with basin dynamics influenced by far field stresses related to the Limpopo Orogeny. During this period the Thabazimbi-Murchison Lineament lay close to the northern margin of the depository. Reactivation of the Lineament between 2.4 and 2.2 Ga resulted in inversion of the Transvaal Basin and formation of the northward verging Mhlapitsi fold and thrust belt. The half-graben setting envisaged for the deposition of the Pretoria Group was influenced by the Thabazimbi-Murchison Lineament as was the emplacement and subsequent deformation of the Bushveld Complex.  相似文献   

6.
7.
8.
地壳运动的驱动力一直存在争议。目前虽然提出了很多假说,但这些假说所描述的驱动力数量级均较小,不足以推动地壳运动;另外,大量实际地应力测量表明,水平主压应力在三个地应力分量中最大,被看作地壳“异常”压力,其机理也没有统一的认识。因此,有必要弄清楚地壳运动的动力来源是什么及为什么会出现这种水平应力占主导的现象。受背斜构造或石拱桥的侧向支撑的启发,通过地球模型受力分析得出,地壳作为球壳在自重下会相互挤压,在圆周方向产生很强的周向应力。周向应力大于重力,且由重力派生,和实测的地应力特征是一致的。推测该应力在20 km深处约为900 MPa,足以驱动板块运动(>500 MPa)。因软流圈是可流动的,其上面的岩石圈只要存在薄弱带,该应力就会释放,板块之间从而产生相对运动。整个洋壳和拱桥类似,在该力的作用下,会在俯冲带处下插至陆壳深部,俯冲带就是岩石圈的薄弱区,它因此会承担部分甚至全部洋壳的重量。最后提出,没有独立于重力的、可独立起作用的构造力或碰撞力,周向应力是地壳运动的唯一具有足够数量级的驱动力。  相似文献   

9.
10.
为了探索GPS和跨断层地壳形变数据联合反演效果,本文以鲜水河断裂为研究对象,利用1999~2007期,2009~2013期和2013~2017期中国大陆GPS水平速度场数据,使用贝叶斯反演方法,以跨断层数据为先验条件,估算了川滇菱形块体东边界(主要为鲜水河断裂)的断层运动速率。发现增加跨断层数据后,反演图像的近场和远场速率区别更加显著,不同期次的断层活动速率表现出明显的差异。但是,本方法在震前效果并不明显,尤其是在汶川地震前部分跨断层场地的逆向走滑特征很难表现出来,对于地震预测预报也很难起到优势作用,但从反演效果上来看,可以更直观的反映断层在近场和远场上的速率差异以及地震后断层运动速率的分段特征。最终根据上述研究方法认为鲜水河断裂带在汶川地震后,经过多年的应力调整,目前左旋走滑速率已经基本恢复到震前状态,鲜水河断裂南段持续拉张趋势,川滇菱形块体的顺时针旋转作用持续加强,鲜水河断裂的道孚段和磨西段存均在一定的走滑速率亏损,应注意这两个地区的地震危险性,以及这两个地区地震危险的关联性。  相似文献   

11.
《地学前缘》2017,(3):325-330
介绍了适合于处理高频GPS数据的精密单点定位(PPP)和单点测速(PVD)两种算法,并通过静态模拟实验对其估值精度进行评估。精密单点定位算法解算的动态NEU三维坐标分量RMS分别为4.2、4.7和7.3mm;单点测速算法得到的NEU三维速度分量RMS分别为2.2、1.8和4.3mm/s。针对2010年4月4日墨西哥Baja California MS7.2级地震,选取震中距为60km的观测台站。采用精密单点定位和单点测速算法,分别解算高频GPS观测站的位移和速度的时间序列,其结果与并址的强震仪加速度积分得到的位移和速度的时间序列相比具有较好的一致性。实验结果表明:高频GPS能够有效提取地震波信号,且在强震中不易受仪器倾斜等因素影响,不存在积分偏差,是监测地震等地壳运动的重要手段。两种算法在地震监测应用中各有特点,精密单点定位可获得观测台站的永久变形量,单点测速可实时探测到高精度的地震波信号。  相似文献   

12.
The new version of the geological structure of the Berdyaush pluton (a single intrusion of rapakivi granites in the Urals) presented in this paper is significantly distinct from the previous structural schemes. Rapakivi granites compose no more than 10–20% of the area of the pluton and they are widespread only in its northeastern and southwestern flanks. The contacts between gabbro (I phase), hybrid syenodiorites (II phase), and rapakivi granites (III phase) are transitional, metasomatic. The hybrid syenodiorites and rapakivi granites are formed after gabbroic rocks as a result of their intense thermal and metasomatic transformation by the deep fluids. The driving force of this process could be the unilateral compression of the Berdyaush pluton resulting from formation of the eastward continental rift in the beginning of the Middle Riphean.  相似文献   

13.
This paper reports the results of 3-D tomographic modelling of crustal structure in the Trans European Suture Zone region (TESZ) of Poland, eastern Germany and Lithuania. The data are the product of a large-scale seismic experiment POLONAISE'97, which was carried out in 1997. This experiment was designed to provide some 3-D coverage. The TESZ forms the boundary between the Precambrian crustal terranes of the East European Craton (EEC) and the younger Phanerozoic terranes to the southwest. The 3-D results generally confirm the earth models derived by earlier 2-D analyses, but also add some important details as well as a 3-D perspective on the structure. The velocity model obtained shows substantial horizontal variations of crustal structure across the study area. Seismic modelling shows low (<6.1 km/s) velocities suggesting the presence of sedimentary rocks down to a depth of about 20 km in the Polish basin. The shape of the basin in the vicinity of the profile P4 shows significant asymmetry. Three-dimensional modelling also allowed tracing of horizontal irregularities of the basin shape as well as variations of the Moho depth not only along profiles, but also between them. The slice between P2 and P4 profiles shows about 10-km variations of the Moho over a 100-km interval. The crustal thickness varies from about 30 km in SW, beneath the Palaeozoic platform, to about 42 km beneath East European Craton in NE. High seismic velocities of about 6.6 km/s were found in the depth range 2–10 km, which coincides with K trzyn anorthosite massif. The results of this 3-D seismic modelling of the POLONAISE'97 data will ultimately be supplemented by inversion of seismic data from previous experiments.  相似文献   

14.
15.
前人研究认为,火山岩中部分地球化学指标与岩浆弧地壳厚度之间存在一定的相关性,并通过统计主量元素K2O、Ca O和Na2O指标及微量元素Ce/Y、Sm/Yb、Dy/Yb、Sr/Y、La/Yb指标与地壳厚度之间关系,约束地质史上某些区域的地壳厚度发展和变化。本文基于GEOROC数据库,以Si O2含量57%和火山岩年龄23Ma为界,将全球火山岩数据分成年轻-壳源( 57%,23Ma)、年轻-幔源(57%,23Ma)、古老-壳源( 57%, 23Ma)和古老-幔源(57%, 23Ma)四个数据集,并通过核函数估计方法获得了各个地球化学指标与地壳厚度的归一化联合概率密度分布图。本文统计结果表明,年轻-幔源火山岩中的K2O含量分布与壳源火山岩呈现指数正相关关系、Ca O含量分布于地壳厚度呈现线性负相关关系,年轻-壳源火山岩中Ce/Y、La/Yb和Sm/Yb与现今地壳厚度有指数正相关关系。由以上5种地化指标建立的回归方程确定系数R2均大于0. 7,可以认为相关关系显著。本文认为幔源岩浆在穿透地壳到达地表过程中,地壳厚度控制了富K壳源物质进入地幔熔体和富Ca矿物结晶分异过程,导致了火山岩中K2O和Ca O含量的相关变化;而下地壳部分熔融形成的壳源岩浆,不同深度压力控制了残留相矿物比例,导致Ce/Y、La/Yb和Sm/Yb体现出与地壳厚度的相关性。本文建立的回归函数是基于大量数据概率密度分布的统计分析得出的,由于离群数据普遍存在,回溯历史地壳厚度变化需要大量数据统计支撑,否则难以获得可靠的结果。  相似文献   

16.
The Europrobe Seismic Reflection Profiling in the Urals Experiments (ESRU) reflection seismic data from the Middle Urals images c. 10‐km thick band of strong, subhorizontal lower crustal reflectivity and a thinning of the crust that is associated with the East Uralian Zone, a broad strike‐slip fault system containing high‐grade metamorphic rocks and syn‐orogenic to post‐orogenic granitoids. The lower crustal reflectivity consists of discontinuous to continuous, high‐amplitude reflections. Reflections are subparallel to slightly oblique and have a layered to oblate appearance. Geometrical relationships indicate that the reflectivity post‐dates fault activity, suggesting that late‐orogenic processes modified the lower crust. The surface geology indicates that the conditions for lower crustal flow were met in the East Uralian Zone. We suggest that the lower crustal reflectivity imaged by the ESRU data is related to a flow channel that developed at the base of the crust in the interior of the orogen.  相似文献   

17.
阿拉善地区地壳稳定性研究   总被引:1,自引:0,他引:1  
阿拉善作为中国西部的一个刚性块体,岩石圈有效弹性厚度为40~50km,地壳稳定。新生代以来,由于受印度板块向欧亚板块俯冲的远程效应影响,阿拉善地块发生构造隆升,块体周缘造山带发生构造活动,但块体内部宗乃山一沙拉扎山地区新生代期间为准平原化地貌,新构造运动不发育。综合分析阿拉善地区地壳稳定性和岩体发育情况,笔者遴选出宗乃山~沙拉扎山侵入岩带作为高放废物处置库备选场址的重点工作区。  相似文献   

18.
客观评价城市区域地壳稳定性,对于城市安全与可持续发展有着极其重要的意义.哈尔滨城市地质调查系统地研究了哈尔滨地区的莫霍面深度、地球物理场、火成岩特征及历史地震记录,并开展大地电磁测深、钻探及汞气测量研究,认为哈尔滨地区地壳结构连续、完整、稳定,不会发生中等强度及以上地震活动.  相似文献   

19.
松潘-甘孜地块地壳性质再研究   总被引:2,自引:0,他引:2       下载免费PDF全文
松潘-甘孜地块的基底构造性质对于探讨青藏高原的形成至关重要,备受国内外学者的关注。然而,由于松潘-甘孜地块被广泛分布的三叠纪复理石沉积所覆盖,关于松潘-甘孜地块基底属性的研究并不多见,它属于洋壳还是陆壳,至今仍在争论之中。本文利用跨越松潘-甘孜地块的深地震反射剖面、深地震测深剖面、区域航磁异常和花岗岩同位素地球化学等资料,通过综合分析研究其地球物理与地球化学特征,发现松潘-甘孜地块的下地壳存在元古代变质基底,该基底具有亲扬子地块的性质。  相似文献   

20.
Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ?Nd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号