首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New data on the chemical and rare-element composition and age of the rocks referred earlier to the Iruney suite of the Kamchatka Isthmus are received. In the recent structure these rocks compose the structural–strata complexes of the nappe-folded Lesnovsky Rise. Radiolarian analysis data substantiate that the deposits belonging to the Ening series and the middle and upper parts of the Iruney suite were formed in a single sedimentation basin in the Campanian time. The discovery of a new occurrence of Prunobrachidae representatives on the Kamchatka Peninsula allows us to draw wide interregional correlations and reconstruct the sedimentation conditions. The studied volcanites relate to different igneous series and were formed in geodynamic conditions of the marginal sea and the volcanic arc. The igneous rocks of the Ening stratum are similar to the N-MOR and OI basalts that were formed within the marginal sea (Iruney Marginal Sea) basin. The Upper Cretaceous formations of the eastern slope of the Sredinny Range were formed within the volcanic rise with the island-arc type of volcanism. The younger Eocene igneous rocks of the neo-autochthon (granites and granodiorites) and the volcanic rocks of the Kinkil suite mark a new orogenic stage of development of the Kamchatka margin.  相似文献   

2.
This study presents new data on the geochemistry and mineral chemistry of ultramafic and mafic rocks in ophiolits from the base of the Kumroch segment of the Achayvayam-Valagin paleoarc. The new data enabled us to consider peridotites and the associated diabases and gabbros enclosed as separated blocks into a serpentinite mélange as a single ophiolite complex formed in a supra-subduction setting and subsequently disintegrated as a result of nappe formation. The variations identified in the geochemistry and compositions of rock-forming minerals are shown to be characteristic of the other study ophiolite complexes of Eastern Kamchatka. This is suggested to reflect spatial-temporal heterogeneity of partial melting during evolution of the Achayvayam-Valagin island arc.  相似文献   

3.
阿拉善地区前寒武纪不同岩群、岩组和杂岩中的斜长角闪岩均呈层状产出 ,其原岩多为高铁拉斑玄武岩 ,普遍具有高钾高钛、稀土元素含量高、轻稀土元素富集的地球化学特征 ,与典型的大洋拉斑玄武岩、太古宙的TH1型和TH2 型拉斑玄武岩有较明显的区别。岩石组合特征和多种地球化学判别图解均表明 ,该区的斜长角闪岩主要形成于板内环境 ,属于板内裂陷或大陆边缘裂陷的大地构造环境。初步的同位素年代学研究表明 ,叠布斯格岩群中斜长角闪岩的原岩形成于新太古代 ,含黑云斜长角闪岩中的角闪石3 9Ar_40 Ar坪年龄和等时线年龄分别为 1918Ma和1919Ma ,说明其曾经历了古元古代角闪岩相变质作用的叠加。巴彦乌拉山岩组中斜长角闪岩形成于 2 2 71Ma~2 2 6 4Ma。波罗斯坦庙片麻杂岩中的斜长角闪岩已被 1818Ma和 1839Ma花岗片麻岩侵入 ,根据该杂岩体中斜长角闪岩与巴彦乌拉山岩组中同类岩石的地球化学特征 ,推断其形成于古元古代早期。阿拉善群德尔和通特组中的斜长角闪岩目前尚无确切的同位素年代学数据 ,但相同层位的石榴石二云母石英片岩中锆石离子探针定年已获得平均同位素年龄值为 136 3Ma ,推测它有可能形成于中元古代  相似文献   

4.
“全国第四届火山学术研讨会”一号通知   总被引:3,自引:0,他引:3       下载免费PDF全文
为交流我国火山研究与监测方面的成果,迎接在我国举办的国际火山学与地球内部化学协会(IAVCEI)2006年国际学术大会,进一步推动我国火山工作的深入研究和发展,中国灾害防御协会火山专业委员会、中国矿物岩石地球化学学会火山及地球内部化学专业委员会、IUGG中国IAVCEI委员会和广西地震局,定于2005年11月在广西北海市共同主办“全国第四届火山学术研讨会”,欢迎全国同行及有兴趣的各界人士参会。有关事项如下:  相似文献   

5.
安徽北淮阳构造带基底变质岩的构造属性   总被引:1,自引:2,他引:1  
安徽北淮阳构造带的基底由一套变火山沉积岩建造 (即原称庐镇关群 )所组成。岩类学、岩石地球化学、年代学的研究表明 ,这套火山岩属碱性玄武岩系列、拉斑玄武岩系列和钙碱性玄武岩系列 ,分别形成于中元古宙陆内裂解 (扩张 )带和晚元古宙岛弧两种构造环境 ,其中以岛弧环境火山岩为主要部分 ,由此可以证明北淮阳构造带是在中元古宙陆内裂解带基础上发展起来的古弧系 ,具有大陆型基底性质  相似文献   

6.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   

7.
挪威中部Gjersvik地区加里东造山带由一系列地体组成。Gjersvik地体内的火山岩系具有明显的双峰态特征,主要由深色和浅色拉斑玄武质绿岩以及石英角斑质火山碎屑岩组成。火山活动分为三个阶段,各阶段火山活动特征与裂谷构造演化息息相关。地质和地球化学证据表明,裂谷演化早期形成来源于亏损地幔未分异型拉斑玄武岩,中期形成由玄武岩或辉长岩局部重熔产生的长英质火山岩,晚期则形成来源于更深部的富集地幔分异型拉斑玄武岩。Gjersvik地体内已发现一系列的与火山活动有关、空间上与长英质火山碎屑岩紧密共生的块状硫化物矿床。  相似文献   

8.
通过区域地质调查研究,在湘东北文家市涧溪冲村原中元古代冷家溪群新发现一套基本无序的变质沉积-火山岩系。根据岩石矿物学、岩石地球化学研究表明,涧溪冲变质沉积-火山岩系为变质火山岩夹变质粘土质沉积岩,属绿片岩—高绿片岩相。变质火山岩的原岩为大洋拉张环境下形成的以低钾拉斑玄武岩为主,低钾玄武安山岩次之的火山-次火山岩系,其物源为亏损地幔。变火山岩Sm-Nd全岩等时线年龄为(2594±48)Ma,其形成时代可能是新太古代。因此,与传统的中元古代冷家溪群的岩石组合、形成环境、形成时代、变质变形都具有明显不同的特征,原冷家溪群应予以解体。  相似文献   

9.
The Liushuigou intermediate-basic meta-igneous complex at Guanzizhen, Tianshui area, is mainly composed of metagabbro, metagabbro diorite and metadiorite, while the Baihua basic meta-igneous complex consists mainly of pyroxenite, gabbro (gabbro diorite), diorite and quartz diorite. They form a relatively complete comagmatic evolutionary series. The geochemical characteristics of intermediate-basic igneous rocks indicate that they belong to a tholeiite suite. Their chondrite-normalized REE patterns are nearly flat and are LREE-slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider-grams are generally similar; the LILEs Cs, Ba, Sr, Th and U are enriched, while Rb and K and the HFSEs Nb, P, Zr, Sm, Ti and Y are depleted. All these show comagmatic evolutionary and genetic characteristics. The tectonic environment discrimination by trace element reveals that these igneous complexes formed in an island-arc setting. The Thermal Ionization Mass Spectrometry (TIMS) single-grain zircon U-Pb age for the Liushuigou intermediate-basic meta-igneous rocks in the Guanzizhen area is (507.5±3.0) Ma, representing the age of these igneous complexes, which indicates that island-arc-type magmatite rocks in the northern zone of West Qinling are Late Cambrian and also reveals that the timing of subduction of the paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activity are probably Late Cambrian to Early Ordovician. Translated from Geology in China, 2005, 32(4): 529–540 [译自: 中国地质]  相似文献   

10.
New age and structural data are reported for the siliceous-volcanogenic complexes developed in the lower reaches of the Ussuri River. These complexes, which were previously treated as one stratigraphic unit, are subdivided into the Snarsky tectonostratigraphic complex (end of the Middle Jurassic-Middle Aptian) and the basaltic sequence (supposedly, Campanian-Maastrichtian). The Snarsky Complex is made up of basic volcanics, cherts, siliceous-clayey rocks, as well as subordinate limestones, sandstones, and conglomerates. Its distinctive features are the large amounts of genetically diverse basalts, the abundance of volcanomictic and pyroclastic material in siliceous-clayey rocks, the absence of fragmental rocks typical of the continental convergent zone, and the facies heterogeneity of the deposits. The complex is considered to be the southwestern continuation of the Kiselevka-Manoma terrane. Its origin is presumably related to the tectonic piling of genetically heterogeneous assemblages. The basaltic sequence includes basalts, basaltic andesites, their tuffs, and tuff conglomerates. The tuff conglomerates contain numerous fragments of granites and garnet-bearing felsic volcanics. The sequence was formed on the crystalline paleocontinental basement in the Late Cretaceous.  相似文献   

11.
Ophiolites of the Afrika Mys Block of the Kamchatsky Mys Peninsula, eastern Kamchatka, are a fragment of an accretionary prism that formed in the Late Cretaceous-Eocene on the southern side of the Kronotsky island arc as a result of its collision with the Smagino volcanic uplift that arose at the post-Neocomian time on the subducting plate. On the basis of the geologic, geochemical, and paleomagnetic data available to date, it is established that ophiolites are heterogeneous in their origin and were formed in different geodynamic settings that changed progressively with time. The heterogeneous structure of ophiolites displays the evolution of a fragment of the oceanic lithosphere, which was not submerged into subduction zone, from its origination in the spreading center via transformation under conditions of the plume-related volcanic uplift to the involvement in the structure of the Kronotsky island arc, which is currently a constituent of the accretionary system of Kamchatka. The reconstruction of ophiolites tectonically fragmented in the accretionary prism allows recognition of (1) derivatives of an ocean ridge (ultramafic-gabbro-basaltic complex of the Mount Olen’ya Massif) conjugated with a transform fault and volcanosedimentary rocks of the Smagino volcanic uplift (cover of the oceanic crust) and (2) a fragment of the lithospheric mantle (ultramafic rocks of the Lake Stolbovoe Massif) exhumed in the process of collision and genetically related to the evolution of the volcanic uplift. In the course of evolution of the Kronotsky island arc, all these elements were overlapped by tephrogenic turbidites (Pikezh Formation) and quartz-feldspar graywackes (Pikezh Sandstone) that were involved in the accretionary prism as well. The paleotectonic reconstructions broadly support the petrologic conclusions about the complementary nature of different igneous complexes and ascertain the temporal sequence of events.  相似文献   

12.
西藏阿里地区火山岩的岩石系列及特征   总被引:2,自引:0,他引:2  
西藏阿里地区冈底斯构造带分布有早白垩世的玄武岩-安山岩-英安岩系列及晚白垩—第三纪的玄武岩-安山岩-流纹岩系列,它们分别属于拉斑玄武及钙碱性系列。前者主要由地幔导源的玄武岩浆经分离结晶作用形成,而钙碱性系列主要由混合作用及同化作用形成。此外其岩浆房的fO_2与fH_2O高,液相线温度偏低并与地壳导源的岩基活动有密切的关系.  相似文献   

13.
The newly formed continental crust in southern Kamchatka was created as a result of the Eocene collision of the Cretaceous-Paleocene Achaivayam-Valagin island arc and the northeastern Asian margin. Widespread migmatization and granite formation accompanied this process in the Sredinny Range of Kamchatka. The tectonic setting and composition of granitic rocks in the Malka Uplift of the Sredinny Range are characterized in detail, and the U-Pb (SHRIMP) zircon ages are discussed. Two main stages of granite formation—Campanian (80–78 Ma ago) and Eocene (52 ± 2 Ma ago) have been established. It may be suggested that granite formation in the Campanian was related to the partial melting of the accretionary wedge due to its under-plating by mafic material or to plunging of the oceanic ridge beneath the accretionary wedge. The Eocene granitic rocks were formed owing to the collision of the Achaivayam-Valagin ensimatic island arc with the Kamchatka margin of Eurasia. In southern Kamchatka (Malka Uplift of the Sredinny Range), the arc-continent collision started 55–53 Ma ago. As a result, the island-arc complexes were thrust over terrigenous sequences of the continental margin. The thickness of the allochthon was sufficient to plunge the autochthon to a considerable depth. The autochthon and the lower portion of the allochthon underwent high-grade metamorphism followed by partial melting and emplacement of granitic magma 52 ± 2 Ma ago. The anomalously rapid heating of the crust was probably caused by the ascent of asthenospheric magma initiated by slab breakoff, while the Eurasian Plate plunged beneath the Achaivayam-Valagin arc.  相似文献   

14.
The metamorphic rocks of the Khavyven Highland in eastern Kamchatka were determined to comprise two complexes of metavolcanic rocks that have different ages and are associated with subordinate amounts of metasediments. The complex composing the lower part of the visible vertical section of the highland is dominated by leucocratic amphibole-mica (±garnet) and epidote-mica (±garnet) crystalline schists, whose protoliths were andesites and dacites and their high-K varieties of the island-arc calc-alkaline series. The other complex, composing the upper part of the vertical section, consists of spilitized basaltoids transformed into epidote-amphibole and phengite-epidote-amphibole green schists, which form (together with quartzites, serpentinized peridotites, serpentinites, and gabbroids) a sea-margin ophiolitic association. The high LILE concentrations, high K/La, Ba/Th, Th/Ta, and La/Nb ratios, deep Ta-Nb minima, and low (La/Yb)N and high 87Sr/86Sr ratios of the crystalline schists of the lower unit are demonstrated to testify to their subduction nature and suggest that their protolithic volcanics were produced in the suprasubduction environment of the Ozernoi-Valaginskii (Achaivayam-Valaginskii) island volcanic arc of Campanian-Paleogene age. The green schists of the upper unit show features of depleted MOR tholeiitic melts and subduction melts, which cause the deep Ta-Nb minima, and low K/La and 87Sr/86Sr ratios suggesting that the green schists were formed in a marginal basin in front of the Ozernoi-Valaginskaya island arc. Recently obtained K-Ar ages in the Khavyven Highland vary from 32.4 to 39.3 Ma and indicate that the metamorphism of the protolithic rocks occurred in the Eocene under the effect of collision and accretion processes of the arc complexes of the Ozernoi-Valaginskii and Kronotskii island arcs with the Asian continent and the closure of forearc oceanic basins in front of them. The modern position of the collision suture that marks the fossil subduction zone of the Ozernoi-Valaginskii arc and is spatially restricted to the buried Khavyven uplift in the Central Kamchatka Depression, which is characterized by well-pronounced linear gravity anomalies.  相似文献   

15.
新疆柯坪库木如吾祖克地区二叠纪火山岩   总被引:9,自引:0,他引:9  
新疆柯坪库木如吾祖地区二叠纪火山岩产于柯坪微地块中。为陆相火山岩,主要由基性熔岩(辉石玄武岩)和酸性凝灰岩组成,具双峰式火山岩系组合特征,火山岩为3个火山喷发旋回的产物,从下至上基性熔岩主元素成分成规律性变化,表明基性熔岩为同源岩浆分异演化的产物。基性熔岩具有大陆火山岩性质,形成于大陆拉张环境。该二叠纪火山岩为天山造山带石炭-二叠纪大规模裂谷作用在柯坪古老微地块上的反映。  相似文献   

16.
北山古生代火山岩尤其是石炭纪-二叠纪火山岩的形成环境及成因备受学者关注且长期以来存在争议。本文收集了近年来发表的关于北山石炭纪-二叠纪火山岩研究的地球化学数据,岩石地球化学特征显示北山石炭纪玄武岩主要为安山玄武岩,属拉斑系列,二叠纪火山岩主要为安山玄武岩和亚碱性玄武岩,落入拉斑系列及过渡区;石炭纪玄武岩和二叠纪玄武岩均具有LREE富集的球粒陨石标准化稀土元素配分模式,轻重稀土元素分馏程度均较低。在微量元素蛛网图上,石炭纪-二叠纪遭受地壳混染的玄武岩呈现出明显的Nb-Ta亏损和微弱的Ti亏损特征,而未遭受地壳混染作用的绝大多数石炭纪-二叠纪玄武岩主要呈现出与OIB相似的"隆起"状不相容元素标准化配分模式。岩石成因分析认为,石炭纪-二叠纪玄武质岩浆可能主要来源于地幔柱,部分石炭纪-二叠纪玄武岩在形成演化过程中遭受了明显的大陆地壳混染作用,导致其出现十分相似于岛弧或活动大陆边缘的地球化学特征。结合区域构造演化分析及构造环境判别,认为石炭纪-二叠纪玄武岩均形成于大陆板内环境。  相似文献   

17.
东昆仑造山带诺木洪郭勒早古生代火山活动   总被引:2,自引:1,他引:2  
诺木洪郭勒一带发育早古生代火山岩, 可明显分为2种类型: 一类为基性火山岩组合, 岩石主要为具枕状构造的玄武岩, SiO2碱度均较低, 为拉斑系列玄武岩, 稀土、微量元素特征及构造环境判别显示其形成于洋中脊的构造环境; 另一类为中基性火山岩组合, 火山岩岩石类型复杂, 熔岩和火山碎屑岩均较发育, 熔岩成分从基性到中酸性均有, 火山岩SiO2成分变化较大, 既有亚碱性, 又有碱性, 亚碱性系列岩石多属钙碱性系列.稀土、微量元素特征及构造环境判别其形成于火山弧的环境.   相似文献   

18.
张海祥  张伯友 《中国地质》2003,30(3):254-260
对星子群变质岩的原岩性质及其形成的构造环境研究表明,星子群变质岩中的片岩和变粒岩的原岩是沉积岩,其中云母片岩的原岩为粘土岩,石英片岩和变粒岩的原岩是杂砂岩或亚杂砂岩。斜长角闪岩、角闪片岩和榴闪岩的原岩为基性火山岩。变质沉积岩的形成构造环境判别结果表明,它们形成于活动大陆边缘环境。而变质基性火山岩属于岛弧拉斑玄武岩与大洋拉斑玄武岩的过渡类型,它们形成于拉张盆地。  相似文献   

19.
琼北火山活动分期与全新世岩浆演化   总被引:12,自引:9,他引:12  
琼北火山活动始于始新世以来,早第三纪火山岩以夹层隐伏于不同时期的地层中。本文新提供的琼北火山岩K-AT年龄和砂岩捕虏体热释光年龄,从年代学上确定了琼北存在全新世火山喷发活动。琼北地表火山岩从早到晚分为6期:蓬莱期(中新世)、金牛岭期(上新世)、多文岭期(早更新世)、东英期(中更新世)、道堂期(晚更新世)、雷虎岭期(全新世)。雷虎岭期又分为早晚两个亚期:雷虎岭亚期和马鞍岭亚期,它们分别属于橄榄拉斑玄武岩和石英拉斑玄武岩。火山岩稀土元素、微量元素和Sr,Nd,Pb同位素地球化学特征揭示,岩浆来自亏损地幔(DMM)和富集岩石圈或亏损地幔(DMM)与俯冲洋壳两种不同的地球化学组分混合源区。橄榄拉斑玄武岩是相对原始的地幔岩浆。橄榄拉斑玄武岩岩浆经约10%橄榄石分离结晶可以形成石英拉斑玄武岩浆。岩浆上升过程中未受明显的陆壳混染。  相似文献   

20.
The lateral variability of structural elements in the collision zone of the Cretaceous-Paleocene Achaivayam-Valagin island arc with the northeastern Asian margin is considered. The similarity and difference of Eocene collision structural elements in the north and the south of Kamchatka are shown. In northern Kamchatka, the continent-arc boundary is traced along the Lesnaya-Vatyn Thrust Fault, which completed its evolution about 45 Ma ago. The thin, near-horizontal allochthon of this thrust, composed of island-arc rocks, overlies the deformed but unmetamorphosed terrigeneous sequences of the Asian margin. The general structure of this suture in the Kamchatka Isthmus and southern Koryakia is comparable with the uppermost subduction zone, where a thin lithospheric wedge overlaps intensely deformed sediments detached from the plunging plate. In southern Kamchatka (Malka Uplift of the Sredinny Range), the arc-continent collision started 55–53 Ma ago with thrusting of island-arc complexes over terrigenous rocks of continental margin. However, the thickness of the allochthon was much greater than in the north. Immediately after this event, both the autochthon and lower part of allochthon were deformed and subsided to a significant depth. This subsidence gave rise to metamorphism of both the autochthon (Kolpakov and Kamchatka groups, Kheivan Formation) and lower allochthon (Andrianovka and Khimka formations). The anomalously fast heating of the crust was most likely related to the ascent of asthenospheric masses due to slab breakoff, when the Eurasian Plate was plunging beneath the Achaivayam-Valagin arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号