首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges.A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

2.
The comprehensive observations on lightning discharges were conducted in Naqu area of Qinghai-Tibet Plateau in summer of 2002. The electric structures of thunderstorms and the characteristics of lightning discharges at initial stage were analyzed by using the observation data. The results show that most of intracloud (IC) lightning flashes were polarities inverted in thunderstorms with tripole electric charge structure and occurred between negative charge region located in the middle of the thunderstorm and positive charge region located at the bottom of the thunderstorm. The radiation characteristics of discharge processes in cloud with longer lasting time involved in Cloud-to-Ground (CG) lightning flashes were similar to that of IC discharges. A lot of radiation pulses were produced in these discharge processes. Because the IC discharges took place at the bottom of thundercloud and were near the ground, they may produce more serious damage to equipment on the ground therefore should not be neglected in lightning protection.  相似文献   

3.
Intracloud (IC) lightning is used to mean those lightning flashes which channels do not strike the ground. It is an important scientific problem to inves-tigate the IC flash features and the discharge physics.Measurements from the electric field change arrange-ment[1,2] and VHF radiation events[3,4] have provided ample evidence that IC flashes have branches with substantial horizontal extents. The VHF interferomet-662 Science in China: Series D Earth Sciences ric observations[5] also s…  相似文献   

4.
青藏高原那曲地区雷电特征初步分析   总被引:32,自引:3,他引:29       下载免费PDF全文
通过对2002年夏季青藏高原那曲地区雷暴过程及闪电观测资料的初步分析,发现该地区雷暴电荷结构具有多样性和复杂性,地闪明显偏少. 对高原地闪的一些基本特征参量的统计分析表明,无论正地闪还是负地闪梯级先导前都具有持续时间较长的云内放电过程,地闪以单次回击为主. 与中低纬度地区相比,高原地闪中正地闪比例明显要高,为33髎;负地闪为67髎;正、负地闪回击后常常伴随短时间的连续电流.  相似文献   

5.
The purpose of this study was to understand the reasons why frequent positive cloud-to-ground (+CG) flashes occur in severe thunderstorms. A three-dimensional dynamics-electrification coupled model was used to simulate a severe thunderstorm to permit analysis of the conditions that might easily cause +CG flashes. The results showed that strong updrafts play an important role in the occurrence of intracloud flashes. However, frequent +CG flashes require not only strong updrafts but also strong downdrafts in the lower cloud region, conditions that correspond to the later phase of the mature stage and the period of the heaviest solid precipitation of a thunderstorm. During this stage, strong updrafts elevated each charge area in the updraft region to a higher level, which resulted in an inverted tripole charge structure. A wide mid-level region of strong positive charge caused largely by positively charged graupel, presented in the middle of the updraft region because of a non-inductive ice-ice collisional charging mechanism. The charge structure in the downdraft region was consistently more complex and revealed several vertically stacked charge regions, alternating in polarity. Much of the graupel/hail outside the updrafts was lowered to cloud-base by strong downdrafts. In this area, the graupel/hail was charged negatively because of the transportation of negatively charged graupel/hail from higher regions of negative charge in the updrafts, and via the inductive charging mechanism of collisions between graupel/hail and cloud droplets at the bottom of the cloud. Consequently, a large region of negative charge formed near the ground. This meant that +CG flashes were initiated more easily in the lower inverted dipole, i.e., the middle region of positive charge and lower region of negative charge. Frequent +CG flashes began almost synchronously with dramatic increases in the storm updrafts, hail volume, and total flash rate. Therefore, the occurrence of +CG flashes appears a good indicator of storm intensification and it could have some use as a predictor of severe weather in the form of hail.  相似文献   

6.
随机性与电环境特征对地闪击地点影响的数值模拟   总被引:7,自引:0,他引:7       下载免费PDF全文
本文利用已有的随机放电参数化方案,结合四次探空资料,进行了12.5 m的高分辨率二维雷暴云数值模拟实验,得到了各种雷暴云电荷结构下的地闪个例,并就地闪击地点与空间电荷、电位分布之间的相互关系进行了分析.结果表明:(1)由空间电荷唯一确定的电位分布决定了先导的传播最大趋势,而闪电传播的随机性所带来的地闪击地点的不确定范围被限制在3 km之内,利用动态聚类法迭代得出的三个击地点位置之间的差为1 km左右.(2)负地闪的初始点与击地点的位置差主要分布在0~6 km范围内,且93%的负地闪分布在0~4 km范围内,正地闪的分布相对较广,0~3 km范围内占48%,3~6 km范围内占34%,6~10 km范围内占18%.(3)正、负地闪主要产生于离地面最近的一对电荷堆之间,其起始高度越高,初始点与击地点位置差分布越广;另外,产生于三级性雷暴云电荷结构下的正地闪,其起始于上部的主正电荷堆与中部主负电荷堆之间,由于下行正先导会绕过底部的次正电荷堆,因此其击地点与初始点的距离基本在6 km以上.  相似文献   

7.
2016年夏季在青海大通地区获得一次局地雷暴云内的电场探空资料,结合雷达、地闪定位资料,详细分析了该雷暴的地闪活动特征及云内的电荷结构.结果显示,该雷暴过程的负地闪在时间上呈间歇性发生,在空间分布上表现为不连续,且所有的正地闪都发生于雷暴的成熟阶段.在雷暴成熟阶段与消散阶段过渡期获得云内的垂直电场廓线表明,雷暴内的电荷结构在探空阶段呈四极性,最下部为处于暖云区内负电荷区,往上依次改变极性.最上部的正电荷区由于数据丢失无法判断其上边界外,其余3个电荷区的海拔高度分别为:5.5~5.7km(3.4~2.3℃)、5.7~6.2km(2.3~-0.4℃)和6.2~6.6km(-0.9~-1.7℃),对应的电荷密度为-1.81nC·m-3、2.47nC·m-3和-1.76nC·m-3.其中,下部正电荷区的强度最大,其次为上部的负电荷区.通过分析电荷区分布与正地闪活动的关系,认为暖云区内负电荷区的形成有利于诱发下部正电荷区的对地放电.  相似文献   

8.
The upward lightning (UL) initiated from the top of tall buildings (at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground (CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs (OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning (IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL (STUL) is initiated mainly during the dissipation stage of a thunderstorm.  相似文献   

9.
对观测资料的分析表明,甘肃地区和海南岛的地闪特征具有很大差异。海南岛负地闪(P型)首次回击前的电场变化波形与国外的报道类似,而甘肃地区仅有30%左右的负地闪属P型,约70%的负地闪首次回击前的电场变化波形具有明显的云闪特征(C型负地闪)。海南岛没有发现正地闪,甘肃地区有正地闪。该两地区存在两类电结构不同的雷暴,两类雷暴中地闪放电过程及特征的很大差异,说明我国的防雷规范及措施很可能需要考虑雷暴的地区差异性。  相似文献   

10.
A time-of-arrival(TOA) system based on GPS technology for locating VHF radiation sources from lightning has been developed and used in observation sites in the northern Shandong Province,China.The 3D images of the lightning progression have been obtained successfully for the first time in China.The 3D-channel evolutions of typical negative CG,positive CG and IC lightning flashes have been discussed together with the data of fast electric field change.It was found that significant differences existed between the negative and positive CG lightning flashes in terms of the initiation and propagation of the radiation sources.The preliminary breakdown of a negative CG lightning flash propagated at a speed about 5.2×104 m/s.The stepped leader of negative CG lightning flashes was trigged by negative initial breakdown.Thereafter,it propagated downward at a speed of 1.3×105 m/s.The initial process of the positive CG lightning flashes was also a propagation process of negative streamer.These streamers propagated dominantly horizontally in the positive charge region and accumulated positive charges at the origin of the lightning,and as a consequence,initiated downward positive streamers.A new type of lightning discharge that was triggered by a narrow bipolar pulse(NBP) is discussed in this study.The NBP was originated at altitude of about 10.5 km in the upper positive charge region.As a distinct difference from normal IC flash,its channels extended horizontally all around and produced a lot of radiation sources.The source power of the NBP could approach 16.7 kW,which is much greater than that of normal lightning discharge ranging between 100 mW and 500 W.The 3D propagation of this new type of lightning discharge was observed and obtained for the first time in China.The possible initiation mechanism of this new type of light-ning is discussed here.  相似文献   

11.
The negative CG lightning discharges neutralizing negative charges in cloud usually dominate for most of thunderstorms. However, a lot of positive CG light-ning discharges often occur in the disappearing stage of thunderstorms, in the stratiform region of mesoscale convective systems and some supercells producing hail and tornado. Because the positive CG lightning discharges produce larger current of the return stroke and neutralize more charges due to the continuing currents with longer las…  相似文献   

12.
云闪放电对云内电荷和电位分布影响的数值模拟   总被引:15,自引:3,他引:12       下载免费PDF全文
我们应用改进的随机闪电参数化方案,对两次雷暴的起、放电过程进行了二维125 m和250 m分辨率云闪模拟试验,分析表明高分辨率模拟的云闪通道几何结构、延伸范围和最大垂直电场变化等特征与观测结果更为一致,并且揭示了云闪放电重新配置云内电荷分布和空间电荷中和过程的一种新的物理图像:(1) 云闪的直接物理效应是在已有的空间电荷区内沿着放电通道沉积异极性电荷、形成复杂的空间电荷分布,有效地导致云中电位和场强绝对值及静电场能量剧烈下降,使放电终止.其中:放电后在闪电通道经过主要区域,电位降到±30 MV之间,垂直电场强度也降到±20 kV·m-1之间,一次正或负云闪估计消耗掉107~1010 J静电能;(2) 云中电荷中和不是正、负空间电荷简单地直接相互抵消的瞬态过程,而是广泛分布的云中空间电荷与通道沉积的异极性电荷通过湍流交换、平流输送、重力沉降以及起电等多种因素逐渐混合并部分被中和的一个后续慢过程,其弛豫时间典型值在14~44 s之间,在此期间通道感应电荷总量下降到50%以下.并残余部分电荷参与后续放电前高空间电荷密度和强电场的重建过程.  相似文献   

13.
北京地区闪电活动与气溶胶浓度的关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2015—2017年北京闪电定位网(BLNET)总闪资料与35个自动空气质量监测站PM2.5数据,分析了北京地区(39.5°N—41.0°N,115.0°E—117.5°E)夏季(6—8月)闪电活动与PM2.5的时空分布特征,同时针对117次雷暴天气,探讨了气溶胶浓度变化对闪电活动的可能影响.结果表明:PM2.5浓度及总闪密度均呈现自西北向东南升高的空间分布特征.闪电峰值在污染背景下出现的时间(19∶00LT)晚于清洁背景下(15∶00LT)约4h,且总闪百分比(~20%)可达清洁背景下(~9%)的两倍.对雷暴前1~4h的PM2.5浓度与时间窗(12∶00—22∶00LT)内总闪数目的中位数进行相关分析,发现PM2.5浓度低于130μg·m-3时,PM2.5与总闪数存在明显正相关,此时气溶胶可能通过影响云微物理过程进而影响雷暴的对流发展,增强闪电活动;PM2.5大于150μg·m-3时,总闪数随PM2.5浓度...  相似文献   

14.
利用16年(1998-2013)的热带降水测量任务卫星(TRMM)降水雷达和闪电成像仪等多传感器观测资料,分析了亚洲季风区内雷暴和强雷暴的空间分布、季节变化及日变化等气候特征.文中取闪电数大于1的雷达降水特征为雷暴,并将闪电频数在前10%的雷暴定义为强雷暴.结果表明:雷暴活动主要集中在陆地及近海区域,陆地与海洋上的雷暴密度之比约为4.4:1,强雷暴密度之比约为7.4:1.0-10°N纬度带内雷暴数占总雷暴的比例最大(占总数的31.7%),而强雷暴则在20°N-30°N区间最为活跃(34.5%).雷暴与闪电密度的空间分布在低纬度区域(0-30°N)较为一致,但在中纬度地区(30°N-36°N)呈现出不同的分布特征,即从西部的青藏高原向东部的江淮流域,雷暴密度逐渐减少但闪电密度逐渐增加;而强雷暴与闪电密度的空间分布基本一致.受亚洲夏季风活动影响,低纬度地区强雷暴更容易发生在春季,强中心位于喜马拉雅山南麓东端,次中心位于中南半岛,而中纬度地区在夏季最为活跃,强中心和次中心则分别位于喜马拉雅山南麓西端和中国江淮流域.陆地上雷暴主要集中在午后至傍晚,少数区域受局地环流和气象条件的影响夜雷暴活动频繁,而海洋上雷暴更易发生在午夜至清晨.  相似文献   

15.
Lightning activity and precipitation structure of hailstorms   总被引:1,自引:0,他引:1  
By using the cloud-to-ground (CG) lightning location data from the lightning detection network of He- nan Province, surface Doppler radar data and standard orbit data of PR, TMI and LIS on TRMM satellite, the spatial and temporal characteristics of CG lightning flashes in 10 severe hailstorms are analyzed. The results show that the percentage of CG lightning in these hailstorms is high with an average value of 45.5%. There is a distinct increase in CG flash rate during the rapid development stage of hailstorms. The hailstone falling corresponds to an active positive flash period, and the increase of CG flash rate is generally accompanied with a decrease of –CG flash rate. The flash rate declines rapidly during the dissipating stage of hailstorms. The precipitation structure and lightning activity in two typical hail- storms are studied in detail. It is found that strong convective cells with reflectivity greater than 30dBZ mainly are situated in the front region of hailstorms, whereas the trailing stratiform region is in the rear part of the hailstorms. The maximum heights of echo top are higher than 14 km. Convective rain con- tributes much more rainfall to the total than stratiform rain, and the convective rain takes about 85% and 97% of the total in the two cases, respectively. Total lightning in the hailstorms is very active with the flash rate up to 183 fl/min and 55 fl/min, respectively. The results also indicate that most lightning flashes occurred in the echo region greater than 30 dBZ and its immediate periphery. The probability of lightning occurrence is 20 times higher in the convective region than in the stratiform region. The result suggests that the lightning information is helpful to the identification of convective rain region. The linear relationship between flash rate and ice water content is disclosed primarily.  相似文献   

16.
Radio frequency observations of cloud-to-ground lightning (CG) were made in 1999 in Guangdong Province with the broadband lightning interferometer. In this paper, radiation source locations and electric field waveforms are analyzed for different types of breakdown events, including the preliminary breakdown of in-cloud activities, the stepped leaders of initial strokes to ground and activities during and following return strokes. It is shown that the structure and development of lightning discharges and associated breakdown processes can be reconstructed by using this new type of lightning radiation source location system. The detectable radiation of lightning was primarily produced by the negative breakdown process. The channel was concentrated with few branches during the preliminary breakdown stage of CG lightning flashes. The radiation sources appeared generally at the tip of the channel. During the late period of the stepped leader, the radiation sources were dispersed with branches extended away from the main channel. The radiation sources were in a certain length segment of the channel and the altitude of the segment descended along with the propagation of the leader to the ground. During the preliminary breakdown and the stepped leader of initial strokes to the ground, a sequence of fast negative streamers were observed to start continually from or farther away the lightning-initiated region and propagate along the developed leader channel, which may supply negative charge that assisted the leader’s development. The progression speed of fast negative streamers was about ten times faster than the average speed of lightning channel.  相似文献   

17.
沿海地区一次多单体雷暴电荷结构时空演变   总被引:3,自引:0,他引:3       下载免费PDF全文
利用闪电放电辐射源三维时空分布测量,分析了山东低海拔地区一次多单体雷暴过程的电荷结构演变以及与回波强度的关系.结果表明对流云区电荷结构是典型的上正下负电偶极结构,且随着雷暴发展正负电荷层强度增大,高度抬升.负电荷区处在40 dBz以上的强回波区域中,正电荷层处在约40 dBz区域中.层状云区也有类似结构,只是强度弱,高度低.观测到的四层电荷结构是出现在对流区消散阶段,此时,由于云体不同部位的不同消散程度,电荷结构发生断裂,云体前部正负电荷区下沉,云体中部正负电荷区高度变化不大,但负电荷区域变薄,呈现出四层电荷结构.从本例结果说明,雷暴优势起电机制通常能形成电偶极或三极性结构,多极结构可能不是起电形成.本文还分析了一次负地闪传输过程,和宏观电荷结构很好吻合,说明利用三维定位系统观测,可以较好地描述雷暴宏观电荷结构.  相似文献   

18.
The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan region(BMR)during the warm season from 2014 to 2018.The aim of the project was to understand how dynamical,microphysical and electrical processes interact in severe thunderstorms in the BMR,and how to assimilate lightning data in numerical weather prediction models to improve severe thunderstorm forecasts.The platforms used in the field campaign included the Beijing Lightning Network(BLNET,consisting of 16 stations),2 X-band dual linear polarimetric Doppler radars,and 4 laser raindrop spectrometers.The collaboration also made use of the China Meteorological Administration’s mesoscale meteorological observation network in the Beijing-Tianjin-Hebei region.Although diverse thunderstorm types were documented,it was found that squall lines and multicell storms were the two major categories of severe thunderstorms with frequent lightning activity and extreme rainfall or unexpected local short-duration heavy rainfall resulting in inundations in the central urban area,influenced by the terrain and environmental conditions.The flash density maximums were found in eastern Changping District,central and eastern Shunyi District,and the central urban area of Beijing,suggesting that the urban heat island effect has a crucial role in the intensification of thunderstorms over Beijing.In addition,the flash rate associated with super thunderstorms can reach hundreds of flashes per minute in the central city regions.The super(5%of the total),strong(35%),and weak(60%)thunderstorms contributed about 37%,56%,and 7%to the total flashes in the BMR,respectively.Owing to the close connection between lightning activity and the thermodynamic and microphysical characteristics of the thunderstorms,the lightning flash rate can be used as an indicator of severe weather events,such as hail and short-duration heavy rainfall.Lightning data can also be assimilated into numerical weather prediction models to help improve the forecasting of severe convection and precipitation at the cloud-resolved scale,through adjusting or correcting the thermodynamic and microphysical parameters of the model.  相似文献   

19.
The characteristics (annual and diurnal cycle, polarity, multiplicity and first stroke peak current) of ∼4.3×106 cloud-to-ground flashes recorded in the Iberian Peninsula during the first decade of measurements of the lightning detection network installed in Spain are analyzed. The mean monthly variation shows maximum lightning activity between May and September, while minimum values are observed in January and February. The mean diurnal cycle shows maximum values at 1700 LT and minimum values at around 1000 LT. The average maximum flash density (not corrected for detection efficiency) is 2.1 flashes km−2 year−1. Maximum lightning activity is associated with mountainous areas. The effect of the Mediterranean Sea is also seen. The percentage of positive flashes is 9%, although this changes over the year from 6.5% in June to 22.6% in January. The average multiplicity is found to be 2.0 for the negative flashes and 1.1 for the positive flashes, and the percentages of single-stroke flashes are 53.6% and 89%, respectively. The monthly distribution of multiplicity for negative flashes peaks in the summer and minimum values are found in the winter. The multiplicity of the positive flashes does not seem to be function of the month. The median (mean) first stroke peak currents are found to be 23.5 kA (27.3 kA) for the negative flashes and 35.3 kA (47.1 kA) for the positive flashes. For both polarities, the peak current is higher in the summer than in the winter. The percentage of positive flashes and the mean peak currents for negative flashes are higher over the sea areas than over land.  相似文献   

20.
Since the summer of 1996, scientists from China and Japan have conducted a joint observation of natural cloud-to-ground lightning discharges in the Zhongchuan area that is located close to Qinghai-Xizang (Tibet) Plateau, China. It has been found that the long-duration of intracloud discharge processes, just before the first return stroke, lasted more than 120 ms for 85% of cloud-to-ground flashes in this area, with a mean duration of 189.7 ms and a maximum of 300 ms. We present the results of charge sources neutralized by four ground flashes and two intracloud discharge processes, just before the first return stroke, by using the data from a 5-site slow antenna network synchronized by GPS with 1 s time resolution. The result shows that the altitudes of the neutralized negative charge for three negative ground flashes were between 2.7 to 5.4 km above the ground, while that of neutralized positive charges for one positive ground flash and one continuing current process were at about 2.0 km above the ground. The comparison with radar echo showed that the negative discharges initiated in the region greater than 20 dBZ or near the edge of the region with intense echoes greater than 40 dBZ, while positive discharge initiated in the weak echo region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号