首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heavy metal content of particulate matter was investigated in the city of Guangzhou in southern China. Samples of urban foliage near 36 pedestrian bridges were analyzed to determine their Zn, Pb, Cu, Cr, V, Ni, and Co contents after digestion in a mixture of strong acids composed of HNO3, HCl, HF, and HClO4. The results revealed a severe heavy metal pollution compared with the background levels in Chinese soils, except for Co and V. The mean concentrations of Zn (1,024 mg kg?1), Pb (233 mg kg?1), Cu (203 mg kg?1), Cr (118 mg kg?1), V (41.9 mg kg?1), Ni (41.4 mg kg?1), and Co (11.3 mg kg?1) in urban dust were higher than the reference levels, and were highest in samples located near high-traffic areas. Multivariate statistical methods (correlation analysis, principal-components analysis, and clustering analysis) were used to identify the possible sources of the metals. Three main pollutant sources are assigned: Zn, Cu and Ni levels were strongly correlated and were possibly related to combustion processes and vehicles; Pb, Cr and Co were mainly derived from traffic sources, combined with soil sources; and V mainly originated from natural sources.  相似文献   

2.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

3.
Aljustrel mine is located in SW Portugal, in the western sector of the Iberian Pyrite Belt. The Aljustrel village was developed around the exploitations of massive polymetallic sulphides that occur in the area (4 orebodies mined, 2 in exploration phase). The pyrite ore was extensively exploited from 1850 to 1993, when production was discontinued. A mining restart occurred in 2008, only during a few months. The objectives of the study were to assess the levels of soil contamination, to determine associations between the different chemical elements and their spatial distribution, as well as to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. Principal component analysis combined with spatial interpretation successfully grouped the elements according to their sources and provided evidence about their geogenic or anthropogenic origin. From this study, it is possible to conclude that soils around Algares/Feitais tailing deposits, Estéreis and Águas Claras mine dams and S. João mine show severe contamination. The highest concentrations of As (up to 3,936 mg kg?1) and certain heavy metals (up to 321.7 mg kg?1 for Bi, 5,414 mg kg?1 for Cu, 20,000 mg kg?1 for Pb, 980.6 mg kg?1 for Sb, and 22 mg kg?1 Cd) were obtained near Algares area while the highest concentration of Cd (up to 61.6 mg kg?1) and Zn (up to 20,000 mg kg?1) were registered in samples collected in the S. João area. The highest pollution load index (>4.0) was recorded at the Algares area where the metal concentrations exceed typical soil background levels by as much as two orders of magnitude.  相似文献   

4.
Due to the intensified industrial activities and excessive application of agrochemicals and organic waste materials over the last few decades, there is a great concern about the accumulation of potentially toxic elements (PTEs) in soils from north of Khuzestan Province, southwestern Iran. Therefore, a comparative study with a total number of 300 composite soil samples (0–10 cm) from industrial, urban, agricultural, forest, and rangelands; and 26 samples from the major types of soils parent materials was conducted to examine sources, pollution status, and the effects of soil properties, land use types, and the local lithology on the total concentrations of As, Pb, and Cu (measured using atomic absorption spectrometer (AAS) equipped with graphite furnace) in the soils studied. The mean values of Pb and Cu were 12.2?±?4.6 and 13.5?±?7.6 mg kg?1, respectively, slightly higher than the background values of the study area, but lower than the guideline values of Iranian Environmental Quality Standard for Soils. However, the mean values of As (1.72?±?1.15 mg kg?1) were lower than both background values and the guideline values of Iranian Environmental Quality Standard for soils. The greatest values of the geo-accumulation index (I geo), enrichment factor (EF), and the concentrations of Pb, Cu, and As were arranged as industrial > urban > agriculture > rangelands = forest land uses. The results also indicated that concentrations of all PTEs were greater in soils as compared to those in parent materials. Using principal component analysis (PCA), the origin of Cu and Pb with moderate to high enrichments was attributed to the inputs from both natural and anthropogenic sources. However, As was found to be mainly influenced by lithogenic origin.  相似文献   

5.
Greenhouse tests were conducted to study the effect of chelates on the phytoextraction of cadmium and lead, and the rhizodegradation of used engine oil present as a mixed contaminant in a sandy soil. Indian mustard plants were grown in test pot soil for 30 days and chelates ethylenediamine tetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) were individually applied to the test soil. The soil was spiked earlier with 50 mg kg?1 of CdCl2, 500 mg kg?1 of PbCl2 and 500 mg kg?1 of used engine oil to form the mixed soil contaminant. At the same concentration of chelates, EDTA was found to be more effective than EDDS in increasing the concentration of metal contaminants Cd and Pb in the plant. Compared to EDDS, EDTA was also more effective in promoting rhizodegradation of the organic contaminant formed by used engine oil. The study demonstrated that the application of chelates to soils containing mixed contaminants such as heavy metals (Cd and Pb) and organics (used engine oil) can simultaneously assist metal accumulation at higher concentrations in the biomass of Indian mustard plant and also reduce the amount of used engine oil in the soil through rhizodegradation.  相似文献   

6.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   

7.
At present, the prior-established threshold values are widely used to classify contaminated agricultural soils with heavy metals under the cultivation of a variety of crops, without considering the different sensitivity of plants to heavy metals. Evaluation of the characteristics of cadmium transfer from a polluted calcareous soil to cultivated wheat crop and assessment of the efficiency of using the threshold values to reflect the soil pollution risk by cadmium in Zanjan Zinc Town area at the northwest of Iran were the goals of this study. Totally, 65 topsoil (0–20 cm) and corresponding wheat samples of an agricultural region in the proximity of a metallurgical factory were collected and analyzed for cadmium concentration. The results revealed that industrial activities strongly control cadmium distribution in the studied soils. Relatively high bioavailable cadmium contents (mean 0.77 mg kg?1) were found in the soils, notwithstanding their alkalinity. It was observed that just 22.5% of the studied area around the Zinc Town is covered by polluted soils with the cadmium concentration exceeding the maximum permissible concentration of 5 mg kg?1, whereas cadmium concentration in wheat grains of 19 sampled plants is higher than the threshold value of 0.2 mg kg?1. Among these polluted plants, a total of eight samples were grown in areas classified as unpolluted soils with cadmium, based on the soil threshold value. It seems that this misclassification of polluted soils is mainly related to the crop sensitivity to heavy metals uptake from the soil which should be considered.  相似文献   

8.
Perchlorate and iodide concentrations were determined in brown (Undaria pinnatifida and Laminaria japonica) and red (Porphyra sp.) edible seaweeds, which are commonly consumed by Korean people, with the use of ion chromatography, coupled with a tandem mass spectrometer. Seaweeds (i.e., good sources of iodine) are among the most important plant life in the ocean and commonly consumed as food and nutritional supplement in South Korea. All seaweed samples were purchased from different regions in South Korea. The detected concentrations of perchlorate were as follows: 19.7–620.7 μg kg?1 dry weight (n = 11, mean concentration = 149.2 μg kg?1 dry weight) for L. japonica and 7.3–21.7 μg kg?1 dry weight (mean concentration = 10.6 μg kg?1 dry weight) for U. pinnatifida. Of the 11 samples of Porphyra sp., only 1 sample showed 6.7 μg kg?1 dry weight perchlorate. The concentrations of iodide in all seaweed samples varied from 0.44 to 6,800 mg kg?1 dry weight. L. japonica samples (n = 11) had significantly higher iodide concentrations, with a mean of 5,261 mg kg?1 dry weight. The bioconcentration factor values for perchlorate and iodide in the three different seaweeds varied widely and showed similar variation trends. The trend for perchlorate and iodide was Porphyra sp. < U. pinnatifida < L. japonica. The results have provided growing evidence that perchlorate frequently occurs in food products.  相似文献   

9.
Bio-concentration of elements such as Mo, As, Se, Fe, Cu, Zn, Ni and Pb was analyzed in spring onion (Allium fistulosum L.) in three different locations of central Punjab, Pakistan. At location GW, relatively low level of hazardous elements was found in spring onion, suggesting that groundwater is a safe source of water for irrigating food crops. The pH of soil at wastewater irrigation was found less acidic (pH 7.4) than the other sites. The range of concentration in the different samples of spring onion was as follows: 6.15–8.16 mg kg?1 for Mo, 2.77–4.28 mg kg?1 for As, 0.395–0.705 mg kg?1 for Se, 36.73–48.17 mg kg?1 for Fe, 10.58–16.26 mg kg?1 for Cu, 28.87–39.79 mg kg?1 for Zn, 6.66–8.75 mg kg?1 for Ni and 4.33–6.09 mg kg?1 for Pb, respectively. High bio-concentration of Zn (15.37) from soil to spring onion was found at canal water irrigated location. The estimated daily intake of metal for spring onion was less, but the health risk index was higher than 1 for Mo, As, Cu, Pb and Ni, respectively. This was due to higher proportion of spring onion in diet, which consequently increased the health risk index for metals. Therefore, it is recommended to avoid growing vegetables in untreated urban and rural wastewater containing elevated amounts of metals.  相似文献   

10.
Heavy metals are constantly emitted into the environment and pose a major threat to human health, particularly in urban areas. The threat is linked to the presence of Cd, Cr, Cu, Ni, Pb, and Zn in street dust, which consists of mineral and organic particles originating from the soil, industrial emitters, motor vehicles, and fuel consumption. The study objective was to determine the level of street dust contamination with trace metals in Lublin and to indicate their potential sources of origin. The analyses were carried out with an energy-dispersive X-ray fluorescence spectrometer. The sampling sites (49) were located within the city streets characterised by varying intensity of motor traffic. The following mean content values and their variation (SD) were determined: Cd: 5.1?±?1.7 mg kg?1, Cr: 86.4?±?23.3 mg kg?1, Cu: 81.6?±?69.2 mg kg?1, Ni: 16.5?±?3.9 mg kg?1, Pb: 44.1?±?16.4 mg kg?1, and Zn: 241.1?±?94.6 mg kg?1. The level of pollution was assessed with several widely used geochemical indices (geoaccumulation index, enrichment factor, pollution index, index of ecological risk, and potential ecological risk index). For most of the indices, the mean (median) values are arranged in the following manner: Zn?>?Cu(or Cd)?>?Pb?>?Ni?>?Cr. In general, street dust in Lublin does not show pollution with Cr, Ni, and Pb. Igeo and EF indices show moderate levels for Cu, Cd, and Zn; their presence in street dust is linked with anthropogenic factors (motor traffic). A significant threat is posed by Cd, and more than half of the samples show considerable pollution with cadmium (median for the index of ecological risk: 151). The spatial pattern of indices and the results of statistical analyses (CA, PCA) indicate three groups of elements: (1) Cr and Ni: natural origin; (2) Pb: mixed origin; and (3) Cd, Cu, and Zn: anthropogenic origin (mainly motor vehicle traffic). Higher content values for metals of anthropogenic origin in street dust indicate that it is a source of pollution of soil and air in the city.  相似文献   

11.
In this work, the total and each fraction concentration of toxic metals (Pb, Zn, Cu and Cd) in soils as well as in plants from a typical metallurgical industrial area in southwest of China were determined. The obtained experimental results demonstrated that the total toxic metal content in contaminated soils was in the order of Zn > Pb > Cu > Cd. Modified microwave-assisted extraction showed that the distributions of each fraction of toxic metals in soils were different and some soil properties may play a role in the fraction distributions. The content of Cu, Zn, Cd and Pb in different vegetables ranged from 9.82 ± 1.02 to 39.3 ± 1.13 mg kg?1, 1,321 ± 10.50 to 3,153 ± 11.30 mg kg?1, 4.47 ± 0.21 to 18.9 ± 0.37 mg kg?1 and 28 ± 1.2 to 102 ± 1.5 mg kg?1, respectively. And the accumulation of toxic metals in plants was in the order of Cd > Zn > Cu > Pb. The bioconcentration factor (BCF) values of Cd, Zn, Cu and Pb in the different tissues of plants were in the range of 0.03–0.43, 0.027–0.35, 0.014–0.12 and 0.004–0.051, respectively. The distribution of each toxic metal in plants indicated that the ability for plants to accumulate toxic metals in different tissues followed the sequence of leaf > stem.  相似文献   

12.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

13.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

14.
The goal of the paper was to determine the activity of 137Cs and 40K radionuclides as well as heavy metals Zn, Cr, Pb in soil samples taken from the Tatra National Park in the south of Poland. The samples were obtained as cores (10 cm in diameter) from the top 10-cm layer of the soil. Each sample was divided into three subsamples (a, b and c), where a was the subsample closest to the surface and c was the deepest one. Activity of the radionuclides was determined by means of gamma spectrometry, while analysis of heavy metals was performed (after microwave digestion) using atomic absorption spectrometry technique. The highest activity of cesium-137 was detected (5112 ± 120 Bq kg?1) in the “a” layer of the core with the peak concentration of cesium-137 (14,452 ± 278 Bq m?2) in the whole soil core. The highest detected concentration of heavy metals was: Zn—52.8 ± 4.4 mg kg?1, Pb—260.1 ± 9.4 mg kg?1, Cr—52.8 ± 4.4 mg kg?1, respectively. Cluster analysis and principal component analysis were used to examine the obtained data. Application of statistical analysis tools allowed specifying the interdependencies between the examined variables.  相似文献   

15.
Industrial development, intensive agriculture and fast urbanization have caused the metal contents of soils to increase to many times the allowable limits. To assess this impact on urban and rural soils, we quantified the Cd, Cr, Cu, Pb, Ni and Zn contents of 258 soil samples from the Recife metropolitan region (RMR). The objectives of the study were to estimate the probability of ecological risk, to determine the spatial pattern of the metals’ accumulation in the soil and to identify potential sources for the metals using a multivariate geostatistical approach. Mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in soils were 65.2, 17.9, 16.5, 12.8, 6.3 and 1.5 mg kg?1, respectively. The results demonstrated that the Cd was anthropogenic in origin, the Cr and Ni were lithogenic (natural) in origin and the Cu, Pb and Zn were mixed in origin. Cd contaminated 91% of the samples; the median content of Cd (1.4 mg kg?1) was three times the quality reference value for soil. The Cd contents of sugarcane fields exceeded the allowable limit (3.0 mg kg?1) for agricultural areas. The spatial variability of the metals in the RMR showed that metallurgy, cement production, vehicle exhaust and vehicular traffic were the main sources of metals in urban areas, while phosphate-based fertilizers were the main sources in rural areas. More than 80% of the metropolitan region surveyed in the study was at moderate to high ecological risk.  相似文献   

16.
Aluminium smelters are major sources of F emission to the environment. We studied, in laboratory experiments, the sorption and desorption of fluoride on organic and mineral horizons of soils located within 2 km from one of these factories, situated in the northern coast of Galicia (NW Spain). The soils, developed from granite, are acid (pH H2O 3.9–5.5), rich in organic matter (4–16 % C in the A horizon) and most A horizons have high Al saturation in the exchange complex. All samples showed a notable F sorption, between 1,066 and 1,589 mg kg?1, after adding 200 mg F L?1, which accounts for 53–80 % of F added. The sorption was slightly higher in the A horizons than in the respective organic horizons (differences of up to 194 mg kg?1). The fluoride sorption upon addition of 200 mg F L?1 correlated significantly (p < 0.05) with soil pH in water (r = ?0.77), iron extracted by acid ammonium oxalate (r = 0.68), aluminium plus iron extracted by acid ammonium oxalate (r = 0.63), exchange aluminium (r = 0.52) and clay percentage in soil (r = 0.76). The F sorption fitted to both Langmuir and Freundlich models. Desorbed F accounted for only 12–22 % of sorbed fluoride and correlated (p < 0.05) negatively with non-crystalline (extracted by acid ammonium oxalate) Fe (r = ?0.51) and clay content (r = ?0.74) and positively with organic matter (r = 0.69) and with the effective cation exchange capacity of the soil (r = 0.50).  相似文献   

17.
Past mining activities in Swaziland have left a legacy of abandoned mine sites (iron ore, asbestos, diamond and coal mine dumps), all of which have not been reclaimed. These sites were recently (2013) considered by the country’s wastewater treatment authorities as suitable places where biosolids can be applied, firstly as a biosolids disposal alternative and, secondly, as a strategy to accelerate mine soil remediation through phytostabilization. In order to understand the effects that this might have on mine soil conditions and microbiota, two (2) plant growth trials were conducted in biosolid-treated iron mine soils and one (1) trial on undisturbed soil, under greenhouse conditions, for twelve (12) weeks. According to the results obtained, the combination of biosolids and plants led to significant improvements (p < 0.05) in parameters related to soil fertility. Significant increases (p < 0.05) in alkaline phosphatase, β-glucosidase and urease soil enzyme activities were also observed. Copper and zinc were significantly (p < 0.05) increased (Cu from 17.00–50.13 mg kg?1; Zn from 7.59–96.03 mg kg?1); however, these sludge-derived metals did not affect enzyme activities. Improvements in soil physicochemical conditions, organic matter–metal complexes, effects of plants on metals and the essentiality of Cu and Zn to soil enzymes were thought to have masked the effects of metals. Increases in soil enzyme activities were considered to be indicative of improvements in the quality, fertility health and self-purification capacity of iron mine soils due to synergistic effects of biosolids and plants.  相似文献   

18.
This study was conducted to investigate the effect of waterlogging on copper, lead and cadmium fractionation in Chinese purple soil. Heavy metals were added to purple soil at 80 % field capacity and waterlogging regimes as nitrate salts of 500 mg kg?1 of copper and lead, and 5 mg kg?1 of cadmium. Metals in the incubated soil samples were fractionated termly from 1 to 35 days by the sequential extraction procedure. Under both treatments, the heavy metals spiked in the soil were transformed slowly from the exchangeable fractions into more stable fractions, whereas their residual fractions barely changed. The transformation process of exchangeable fraction in soil was estimated by Elovich kinetic equation for the above incubation periods, and the constant B in Elovich equation was applied to reflect the transformation rates of metal speciation. It was found that waterlogging incubation could immobilize heavy metals, resulting in decreased lability and availability of the metals in purple soil. The effect of waterlogging on the redistribution of heavy metals in purple soil might be mainly related to the changes of pH, potential redox and hydrous oxides in varying soil-water systems.  相似文献   

19.
The increasing usage and disposal of plastic products could cause the wide distribution of phthalate esters (PAEs) in various environmental media. In this study, six PAE compounds, namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate, were analyzed in various samples collected from the major plastic industrial area of southern Taiwan, including soil, fertilizer and plastic products, for the purposes of identifying of the possible sources of PAEs and assessing the related health risk. The results show that PAEs in soil samples was dominated by DEHP, with the total concentrations in the range of 0.7?±?0.5, 0.2?±?0.1, and 0.3?±?0.2 mg kg?1 for soil samples from farmland, household back gardens and the roadside, respectively. Contents of PAEs in chemical fertilizer (ND—0 0.87 mg kg?1) were higher than that in organic fertilizer (ND—0.08 mg kg?1), and PAEs concentrations (ND—316 mg kg?1) in plastic mulching films were much less than those in the other types of plastic products (ND—1719 mg kg?1), implying that major sources of PAEs in agricultural soil could be the use of chemical fertilizer and plastic products other than plastic mulching films. Health risk assessment suggested that, via the exposure to PAEs in soil, the potential non-cancer and carcinogenic risks for adults and children are minimal in most cases, except that a “moderate” carcinogenic risk for children exposure to DEHP. The results of this study can serve as a reference for further pollution prevention and environmental protection plans in relation to the industrial operation and discharge as well as the farming practices.  相似文献   

20.
Deltamethrin is one of the most commonly used pyrethroid in agricultural practice in different geographic regions of the world. It is detected in many environments, especially in soil and water, and can exhibit toxic effect to human and other organisms. In this study, we describe two bacterial strains DeI-1 and DeI-2, isolated from soil, and both identified as Serratia marcescens based on profile of the fatty acid methyl esters, biochemical test, and 16S RNA gene analysis, which were shown to efficiently degrade deltamethrin. Degradation of deltamethrin in mineral salt medium (50 mg l?1) proceeded by strains DeI-1 or DeI-2 reached the values of 88.3 or 82.8 % after 10 days, and DT50 was 2.8 or 4.0 days, respectively. Bioaugmentation of deltamethrin-contaminated non-sterile soils (100 mg kg?1) with strains DeI-1 or DeI-2 (3 × 106 cells g?1 of soil) enhanced the disappearance rate of pyrethroid, and its DT50 was reduced by 44.9, 33.1, 44.4, and 58.2 days or 39.1, 25.8, 35.6, and 46.0 days in sandy, sandy loam, silty loam, and silty soils, respectively, in comparison with non-sterile soils with only indigenous microflora. The three-way ANOVA indicated that DT50 of deltamethrin was significantly (P < 0.01) affected by soil type, microflora presence, and inoculum, and the interaction between these factors. Generally, the lower content of clay and organic carbon in soil, the higher degradation rate of deltamethrin was observed. Obtained results show that both strains of S. marcescens may possess potential to be used in bioremediation of deltamethrin-contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号