首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary objective of this study is to further substantiate multistep climatic forcing of late‐glacial vegetation in southern South America. A secondary objective is to establish the age of deglaciation in Estrecho de Magallanes–Bahía Inútil. Pollen assemblages at 2‐cm intervals in a core of the mire at Puerto del Hambre (53°36′21″S, 70°55′53″W) provide the basis for reconstructing the vegetation and a detailed account of palaeoclimate in subantarctic Patagonia. Chronology over the 262‐cm length of core is regulated by 20 AMS radiocarbon dates between 14 455 and 10 089 14C yr BP. Of 13 pollen assemblage zones, the earliest representing the Oldest Dryas chronozone (14 455–13 000 14C yr BP) records impoverished steppe with decreasing frequencies and loss of southern beech (Nothofagus). Successive 100‐yr‐long episodes of grass/herbs and of heath (Empetrum/Ericaceae) before 14 000 14C yr BP infer deglacial successional communities under a climate of increased continentality prior to the establishment of grass‐dominated steppe. The Bølling–Allerød (13 000–11 000 14C yr BP) is characterised by mesic grassland under moderating climate that with abrupt change to heath dominance after 12 000 14C yr BP was warmer and not as humid. At the time of the Younger Dryas (11 000–10 000 14C yr BP), grass steppe expanded with a return of colder, more humid climate. Later, with gradual warming, communities were invaded by southern beech. The Puerto del Hambre record parallels multistep, deglacial palaeoclimatic sequences reported elsewhere in the Southern Andes and at Taylor Dome in Antarctica. Deglaciation of Estrecho de Magallanes–Bahía Inútil is dated close to 14 455 14C yr BP, invalidating earlier dates of between 15 800 and 16 590 14C yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A Late‐glacial–Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia–Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae‐Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5–11 kyr BP). The local Late Pleistocene–Holocene non‐forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A ‘Phyllocladus bulge’ prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early–middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
We present a high‐resolution pollen record of a 695‐cm‐long sediment core from Laguna Loma Linda, located at an altitude of 310 m in the transitional zone between the savannas of the Llanos Orientales and the Amazonian rainforest, about 100 km from the Eastern Cordillera. Based on eight AMS 14C ages, the record represents the last 8700 14C yr BP. During the period from 8700 to 6000 14C yr BP the vegetation was dominated by grass savanna with only a few woody taxa, such as Curatella and Byrsonima, present in low abundance. Gallery forest along the drainage system apparently was poorly developed. Compared with today, precipitation must have been significantly lower and seasonality stronger. During the period from 6000 to 3600 14C yr BP, rainforest taxa increased markedly, reflecting an increase in precipitation. Rainforest and gallery forest taxa such as Moraceae/Urticaceae, Melastomataceae, Alchornea, Cecropia and Acalypha, were abundant, whereas Poaceae were reduced in frequency. From 3600 to 2300 14C yr BP rainforest taxa continued to increase; Moraceae/Urticaceae became very frequent, and Myrtaceae and Myrsine became common. Savanna vegetation decreased continuously. We infer that precipitation was still increasing, and that the length of the annual dry period possibly shortened. From 2300 14C yr BP onwards, grass savanna (mainly represented by Poaceae) expanded and Mauritia palms became frequent. This reflects increased human impact on the vegetation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Owing to proximity of the North Atlantic Stream and the shelf, the Andøya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss‐on‐ignition, tephra and 14C data from three sites at the northern part of the island of Andøya were studied. The period 12 300–11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950–11 050 cal. yr BP by a moisture‐demanding predominantly low‐arctic Oxyria vegetation. During the period 11 050–10 650 cal. yr BP, there was a climatic amelioration towards a sub‐arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420–10 250 cal. yr BP, indicating a time‐lag for the formation of Betula ecotypes adapted to the oceanic climate of Andøya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500–10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low‐arctic heath vegetation along the outer coast.  相似文献   

6.
Widespread molluscan samples were collected from raised marine sediments to date the last retreat of the NW Laurentide Ice Sheet from the western Canadian Arctic Archipelago. At the head of Mercy Bay, northern Banks Island, deglacial mud at the modern coast contains Hiatella arctica and Portlandia arctica bivalves, as well as Cyrtodaria kurriana, previously unreported for this area. Multiple H. arctica and C. kurriana valves from this site yield a mean age of 11.5 14C ka BP (with 740 yr marine reservoir correction). The occurrence of C. kurriana, a low Arctic taxon, raises questions concerning its origin, because evidence is currently lacking for a molluscan refugium in the Arctic Ocean during the last glacial maximum. Elsewhere, the oldest late glacial age available on C. kurriana comes from the Laptev Sea where it is < 10.3 14C ka BP and attributed to a North Atlantic source. This is 2000 cal yr younger than the Mercy Bay samples reported here, making the Laptev Sea, ~ 3000 km to the west, an unlikely source. An alternate route from the North Atlantic into the Canadian Arctic Archipelago was precluded by coalescent Laurentide, Innuitian and Greenland ice east of Banks Island until ~ 10 14C ka BP. We conclude that the presence of C. kurriana on northern Banks Island records migration from the North Pacific. This requires the resubmergence of Bering Strait by 11.5 14C ka BP, extending previous age determinations on the reconnection of the Pacific and Arctic oceans by up to 1000 yr. This renewed ingress of Pacific water likely played an important role in re-establishing Arctic Ocean surface currents, including the evacuation of thick multi-year sea ice into the North Atlantic prior to the Younger Dryas geochron.  相似文献   

7.
A reconstruction of deglaciation and associated sea-level changes on northern James Ross Island, Antarctic Peninsula, based on lithostratigraphical and geomorphological studies, shows that the initial deglaciation of presently ice-free areas occurred slightly before 7400 14C yr BP. Sea-level in connection with the deglaciation was around 30 m a.s.l. A glacier readvance in Brandy Bay, of at least 7 km, with the initial 3 km over land, reached a position off the present coast at ca. 4600 yr BP. The culmination of the advance was of short duration, and by 4300 yr BP the coastal lowlands again were ice-free. A distinct marine level at 16–18 m a.s.l. was contemporaneous with or slightly post-dates the Brandy Bay advance, thus indicating the relative sea-level around 4600–4500 yr BP. Our results from James Ross Island confirm that over large areas in this part of Antarctica the last deglaciation occurred late. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
Radiocarbon-dated pollen records of two adjacent sediment cores from Canal de la Puntilla (40°57′09″S, 72°54′18″W) in the Chilean Lake District reveal that a sparsely vegetated landscape prevailed during the portion of the Last Glacial Maximum between 20200 and about 14800 14C yr BP. Dominating the vegetation was Nothofagus, Gramineae and Compositae, along with taxa commonly found today above the Andean treeline (Perezia-type, Valeriana) and in Magellanic Moorlands (Donatia, Astelia). Nothofagus expanded between 20200 and 15800 14C yr BP, interrupted by a reversal at 19200 14C yr BP and followed by a prominent increase in Gramineae pollen between 15800 and about 14800 14C yr BP. A major increase in Nothofagus started at about 14800 14C yr BP, followed by an abrupt expansion of thermophilous Valdivian/North Patagonian Rain Forest taxa (Myrtaceae, Lomatia/Gevuina, Hydrangea, etc.) at about 14000 14C yr BP. An opening of the rain forest and an expansion of Podocarpus nubigena, Misodendrum, and Maytenus disticha-type subsequently occurred between 11000 and 10000 14C yr BP. These results suggest that mean annual temperature was 6–7°C colder than at present, with twice the modern annual precipitation between 20200 and 14000 14C yr BP, implying a northward shift and intensification of the westerlies storm-tracks. Slight climate warming occurred between 20200 and 15800 14C yr BP, featuring cooling reversals at 19200 14C yr BP, and later at 15800 14C yr BP. The warming of the last termination started at about 14800 14C yr BP, and reached a total temperature rise of ≥5°C by 12400 14C yr BP, followed by cooling between 11000 and 10000 14C yr BP. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
《Quaternary Science Reviews》2005,24(1-2):105-121
Pollen analysis of radiocarbon-dated lake sediment from northern Vancouver Island, southwest British Columbia reveals regional changes in forest vegetation over the last 12,200 14C yr (14,900 cal yr). Between at least 12,200 and 11,700 14C yr BP (14,900–13,930 cal yr BP), open woodlands were dominated by Pinus contorta, Alnus crispa, and various ferns. As P. contorta decreased in abundance, Alnus rubra and more shade-tolerant conifers (i.e., Picea and Tsuga mertensiana) increased. Increases in T. mertensiana, P. contorta, and A. crispa pollen accumulation rates (PARs) between 10,600 and 10,400 14C yr BP (11,660–11,480 cal yr BP) reflect a cool and moist climate during the Younger Dryas chronozone. Orbitally induced warming around 10,000 14C yr BP (11,090 cal yr BP) allowed the northward extension of Pseudotsuga menziesii, although Picea, Tsuga heterophylla, and A. rubra dominated early Holocene forests. By 7500 14C yr BP (8215 cal yr BP), shade-tolerant T. heterophylla was the dominant forest tree. Cupressaceae (Thuja plicata and Chamaecyparis nootkatensis) was present by 7500 14C yr BP but reached its maximum after 3500 14C yr BP (3600 cal yr BP), when a cooler and wetter regional climate facilitated the development of temperate rainforest. The highest rates of vegetation change are associated with Lateglacial climate change and species with rapid growth rates and short life spans.  相似文献   

10.
Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/−20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP (Mytilus edulis) and 12,800 ± 55 14C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.  相似文献   

11.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In the north Irish Sea basin (ISB), sedimentary successions constrained by AMS 14C dates obtained from marine microfaunas record three major palaeoenvironmental shifts during the last deglacial cycle. (i) Marine muds (Cooley Point Interstadial) dated to between 16.7 and 14.7 14C kyr BP record a major deglaciation of the ISB following the Late Glacial Maximum (LGM). (ii) Terminal outwash and ice-contact landforms (Killard Point Stadial) were deposited during an extensive ice readvance, which occurred after 14.7 14C kyr BP and reached a maximum extent at ca.14 14C kyr BP. At this time the lowlands surrounding the north ISB were drumlinised. Coeval flowlines reconstructed from these bedforms end at prominent moraines (Killard Point, Bride, St Bees) and indicate contemporaneity of drumlinisation from separate ice dispersal centres, substrate erosion by fast ice flow, and subglacial sediment transfer to ice-sheet margins. In north central Ireland bed reorganisation associated with this fast ice-flow phase involved overprinting and drumlinisation of earlier transverse ridges (Rogen-type moraines) by headward erosion along ice streams that exited through tidewater ice margins. This is the first direct terrestrial evidence that the British Ice Sheet (BIS) participated in Heinrich event 1 (H1). (iii) Regional mud drapes, directly overlying drumlins, record high relative sea-level (RSL) with stagnation zone retreat after 13.7 14C kyr BP (Rough Island Interstadial). Elsewhere in lowland areas of northern Britain ice-marginal sediments and morainic belts record millennial-scale oscillations of the BIS, which post-date the LGM advance on to the continental shelf, and pre-date the Loch Lomond Stadial (Younger Dryas) advance in the highlands of western Scotland (ca. 11–10 14C kyr BP). In western, northwestern and northern Ireland, Killard Point Stadial (H1) ice limits are reconstructed from ice-flow lines that are coeval with those in the north ISB and end at prominent moraines. On the Scottish continental shelf possible H1-age ice limits are reconstructed from dated marine muds and associated ice marginal moraines. It is argued that the last major offshore ice expansion from the Scottish mountains post-dated ca. 15 14C kyr BP and is therefore part of the H1 event. In eastern England the stratigraphic significance of the Dimlington silts is re-evaluated because evidence shows that there was only one major ice oscillation post-dating ca.18 14C kyr BP in these lowlands. In a wider context the sequence of deglacial events in the ISB (widespread deglaciation of southern part of the BIS → major readvance during H1 → ice sheet collapse) is similar to records of ice sheet variability from the southern margins of the Laurentide Ice Sheet (LIS). Well-dated ice-marginal records, however, show that during the Killard Point readvance the BIS was at its maximum position when retreat of the LIS was well underway. This phasing relationship supports the idea that the BIS readvance was a response to North Atlantic cooling induced by collapse of the LIS. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS14C dates that range from ca. 7670 to 22014C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 610014C yr B.P. (500–265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 440014C yr B.P. From the interval of about 600014C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae,Cecropia,Melastomataceae/Combretaceae,Acalypha, Alchornea,Fabaceae,Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,andWettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 346014C yr B.P. Evidence of agricultural activity, shown by cultivation ofZea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.  相似文献   

14.
Climate change with respect to summer temperature throughout the Holocene is inferred from oscillations in the local Pinus sylvestris, Alnus incana and Betula pubescens forest‐lines, as recorded by fossil pollen and plant macrofossils in lake sediments at four altitudinal levels. Mt Skrubben (848 m a.s.l.), in Dividalen, was deglaciated down to below 280 m a.s.l. during 10 800–10 300 cal. yr BP. Betula pubescens established 10100 cal. yr BP at 280 m a.s.l. and expanded up to near the summit during the next 700 years. Birch woodland prevailed on the mountain plateau until 3300 cal. yr BP. Local Pinus sylvestris stands are recorded up to 400 m a.s.l. at 8450 cal. yr BP and >548 m a.s.l. about 8160 cal. yr BP. Alnus incana expanded from 400 to nearly 790 m a.s.l. during the period 7900–7600 cal. yr BP. The maximum forest distribution lasted until ca. 6000 cal. yr BP. Marked climatic deteriorations caused lowering of the forest‐lines around 4600 and 3000 cal. yr BP. Reconstruction of the summer temperature indicated mean July temperatures at 400 m a.s.l. of 1.5–3°C above the present during the period of maximum forest expansion, whereas >3°C above the present temperature at 548 m a.s.l. This is in accordance with other regional temperature reconstructions from northern Europe. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The authors discuss Late Pleistocene–Holocene depositional environments in one of the Fuegian Andes valleys on the basis of palynological, geomorphological, and sedimentological analyses from two sites located near the Beagle Channel. The results obtained at these localities reinforce and refine the Late Pleistocene–Holocene climatic pattern previously recorded there. A colder period, associated with the Younger Dryas stadial event, is suggested by low Nothofagus pollen frequency, and communities of grass, low scrub, and shrub heath expanded into the low/middle slopes (10,310 14C yr BP). By ca. 9500 14C yr BP, warmer and drier conditions occurred, as evidenced by the development of open-grown vegetation in the valley floors (pollen zone O-3), followed by the expansion of open Nothofagus woodland (pollen zone O-2) in the middle Holocene. The milder climate subsequently changed, as indicated by the spreading of the closed forest and mire (pollen zone O-1), to more humid and cooler conditions during the last ca. 5000 yr BP.  相似文献   

17.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A sedimentological and plant microfossil history of the Late Quaternary is preserved in two sediment cores from early Polynesian ditch systems on southern Aupouri Peninsula. The study places human activities into a geomorphological and ecological context and allows comparison of natural and anthropogenic effects on two different geological settings: a floodplain and a relatively closed peat swamp. The data fill part of the current gap in the environmental record from northern New Zealand, namely MIS 3 (57k–26k yr BP). There is evidence for an increase in fire frequency in the region after 40k 14C yr BP, suggesting a shift to drier (and cooler) conditions. Pollen records show that conifer‐hardwood forest dominated by podocarps (especially Dacrydium) prevailed prior to Polynesian arrival and deforestation within the last millennium, with Fuscopsora insignificant throughout. Both cores show sections with gaps in deposition or preservation, possible flood‐stripping of peat during the pre‐Holocene and mechanical disturbance by early Polynesians. The identification of prehistoric starch grains and other microremains of introduced Colocasia esculenta (taro) in both cores supports indirect evidence that the ditch systems of far northern New Zealand were used for the extensive cultivation of this crop. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

20.
Here we present new relative sea-level (RSL) curves developed from Holocene-aged raised beaches along the southern Scott Coast of the western Ross Sea, Antarctica. Fifty-four dates of marine shells, seal skin and elephant seal remains incorporated within raised beaches during storms afford a chronology for these curves. All of the curves show the same pattern and timing of RSL change within a small range of error. The best-dated curve suggests that final unloading of grounded Ross Sea ice from the southern Scott Coast and McMurdo Sound region occurred shortly before 6500 14C yr BP. This age is consistent with glacial geological evidence that places deglaciation between 5730 and 8340 14C yr BP. Our data strongly suggest that grounding-line retreat of the Ross Sea ice sheet southward through the McMurdo Sound region occurred in mid- and late Holocene time. If this is correct, then rising sea level could not have driven ice recession to the present-day grounding line on the Siple Coast, because global deglacial sea-level rise was essentially accomplished by mid-Holocene time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号