首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

2.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

3.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

4.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

5.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

6.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

7.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

8.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

9.
We present the results of polarimetric observations of the icymoons of Uranus (Ariel, Titania, Oberon, and Umbriel) performed at the 6-m BTA telescope of the SAO RAS with the SCORPIO-2 focal reducer within the phase angle range of $0_.^ \circ 06 - 2_.^ \circ 37$ . The parameters of the negative polarization branch (referred to the scattering plane) are obtained in the V filter: for Ariel the maximum branch depth of P min ≈ ?1.4% is reached at the phase angle of α min ≈ 1°; for Titania P min ≈ ?1.2%, $\alpha _{\min } \approx 1_.^ \circ 4$ ; for Oberon P min ≈ ?1.1%, $\alpha _{\min } \approx 1_.^ \circ 8$ . For Umbriel the polarization minimum was not reached: for the last measurement point at $\alpha _{\min } \approx 2_.^ \circ 4$ , polarization amounts to ?1.7%. The declining P min and shifting αmin towards larger phase angles correlate with a decrease of the geometric albedo of the Uranian moons. There is no longitudinal dependence of polarization for the moons within the observational errors which indicates a similarity in the physical properties of the leading and trailing hemispheres. The phase-angle dependences of polarization for the major moons of Uranus are quite close to those observed in the group of small trans-Neptunian objects (Ixion, Huya, Varuna, 1999 DE9, etc.), which are characterized by a large gradient of negative polarization, about ?1% per degree in the phase-angle range of $0_.^ \circ 1 - 1^ \circ$ .  相似文献   

10.
The well-known Titius-Bode law (T-B) giving distances of planets from the Sun was improved by Basano and Hughes (1979) who found: $$a_n = 0.285 \times 1.523^n ;$$ a n being the semi-major axis expressed in astronomical units, of then-th planet. The integern is equal to 1 for Mercury, 2 for Venus etc. The new law (B-H) is more natural than the (T-B) one, because the valuen=?∞ for Mercury is avoided. Furthermore, it accounts for distances of all planets, including Neptune and Pluto. It is striking to note that this law:
  1. does not depend on physical parameters of planets (mass, density, temperature, spin, number of satellites and their nature etc.).
  2. shows integers suggesting an unknown, obscure wave process in the formation of the solar system.
In this paper, we try to find a formalism accounting for the B-H law. It is based on the turbulence, assumed to be responsible of accretion of matter within the primeval nebula. We consider the function $$\psi ^2 (r,t) = |u^2 (r,t) - u_0^2 |$$ , whereu 2(r, t) stands for the turbulence, i.e., the mean-square deviation velocities of particles at the pointr and the timet; andu 0 2 is the value of turbulence for which the accretion process of matter is optimum. It is obvious that Ψ2(r n,t0) = 0 forr n=0.285×1.523 n at the birth timet 0 of proto-planets. Under these conditions, it is easily found that $$\psi ^2 (r,t_0 ) = \frac{{A^2 }}{r}\sin ^2 [\alpha log r - \Phi (t_0 )]$$ With α=7.47 and Φ(t 0)=217.24 in the CGS system, the above function accounts for the B-H law. Another approach of the problem is made by considering fluctuations of the potentialU(r, t) and of the density of matter ρ(r, t). For very small fluctuations, it may be written down the Poisson equation $$\Delta \tilde U(r,t_0 ) + 4\pi G\tilde \rho (r,t_0 ) = 0$$ , withU(r, t)=U 0(r)+?(r, t 0 ) and \(\tilde \rho (r,t_0 )\) . It suffices to postulate \(\tilde \rho (r,t_0 ) = k[\tilde U(r,t_0 )/r^2 ](k = cte)\) for finding the solution $$\tilde U(r,t_0 ) = \frac{{cte}}{{r^{1/2} }}\cos [a\log r - \zeta (t_0 )]$$ . Fora=14.94 and ζ(t 0)=434.48 in CGS system, the successive maxima of ?(r,t 0) account again for the B-H law. In the last approach we try to write Ψ(r, t) under a wave function form $$\Psi ^2 (r,t) = \frac{{A^2 }}{r}\sin ^2 \left[ {\omega \log \left( {\frac{r}{v} - t} \right)} \right].$$ It is emphasized that all calculations are made under mathematical considerations.  相似文献   

11.
The Ideal Resonance Problem is defined by the Hamiltonian $$F = B(y) + 2\varepsilon A(y) \sin ^2 x,\varepsilon \ll 1.$$ The classical solution of the Problem, expanded in powers of ε, carries the derivativeB′ as a divisor and is, therefore, singular at the zero ofB′, associated with resonance. With α denoting theresonance parameter, defined by $$\alpha \equiv - B'/|4AB''|^{1/2} \mu ,\mu = \varepsilon ^{1/2} ,$$ it is shown here that the classical solution is valid only for $$\alpha ^2 \geqslant 0(1/\mu ).$$ In contrast, the global solution (Garfinkelet al., 1971), expanded in powers ofμ1/2, removes the classical singularity atB′=0, and is valid for all α. It is also shown here that the classical solution is an asymptotic approximation, for largeα 2, of the global solution expanded in powers ofα ?2. This result leads to simplified expressions for resonancewidth and resonantamplification. The two solutions are compared with regard to their general behavior and their accuracy. It is noted that the global solution represents a perturbed simple pendulum, while the classical solution is the limiting case of a pendulum in a state offast circulation.  相似文献   

12.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

13.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

14.
The method of evaluating the photometric perturbationsB 2m of eclipsing variables in the frequency domain, developed by Kopal (1959, 1975e, 1978) for an interpretation of mutual eclipses in systems whose components are distorted by axial rotation and mutual tidal action. The aim of the present paper has been to establish explicit expressions for the photometric perturbationB 2m in such systems, regardless of the kind of eclipses and non-integral values ofm. Recently, Kopal (1978) introduced two different kinds of integrals with respect to associated α-functions andI-integrals which have been expressed in terms of certain general types of series that can be easily programmed for automatic computation within seconds of real time on highspeed computers. Following a brief introduction (Section 1) in which the need of this new approach will be expounded, in Section 3 we shall deduce the integral $$\int_0^{\theta \prime } {\tfrac{{\alpha _n^\prime }}{\delta }} d(sin^{2m} \theta )$$ in terms of a certain general type of series and also β-function, which should enable us to evaluate explicit expressions forf * (h) ,f 1 (h) ,f 2 (h) as well asB 2m .  相似文献   

15.
The new analysis of radar observations of inner planets for the time span 1964–1989 is described. The residuals show that Mercury topography is an important source of systematic errors which have not been taken into account up to now. The longitudinal and latitudinal variations of heights of Mercury surface were found and an approximate map of equatorial zone |?|≤120° was constructed. Including three values characterizing global nonsphericity of Mercury surface into the set of parameters under determination allowed to improve essentially all estimates. In particular, the variability of the gravitational constantG was evaluated: $$\dot G/G = (0.47 \pm 0.47) \times 10^{ - 11} yr^{ - 1} $$ . The correction to Mercury perihelion motion: $$\Delta \dot \pi = - 0''.017 \pm 0''.052 cy^{ - 1} $$ and linear combination of the parameters of PPN formalism: $$\upsilon = (2 + 2\gamma - \beta )/3 = 0.9995 \pm 0.0013$$ were determined; they are in a good agreement with General Relativity predictions. The obtained values Δ.π and ν correspond to the negligible solar oblateness, the estimate of solar quadrupole moment being: $$J_2 = ( - 0.13 \pm 0.41) \times 10^{ - 6} $$ .  相似文献   

16.
We determine equilibrium configuration of Emden-Chandrasekhar axisymmetric, solid-body rotating polytropes, defined as EC polytropes, for polytropic indices ranging from 0 (homogeneous bodies) to 5 (Roche-type bodies). To this aim, we improve Chandrasekhar's method to determine equilibrium configurations on two respects: namely, (a) no distinction exists between undistorted and distorted terms in the expression of the potential, and (b) the comparison between the expressions of gravitational potential and its first derivatives inside and outside the body has to be made on the boundary of a sphere of radius ΞE, which does not necessarily coincide with the undistorted Emden's sphere of radius \(\bar \xi _0 \geqslant \Xi _{\text{E}} \) . We also allow different values of \(\bar \xi _0 \) for different physical parameters, and choose a special set which best fits more refined results (involving more complicated and more expensive computer codes) by James (1964). We find an increasing agreement with increasing values of polytropic indexn and vice-versa, while a large discrepancy arises for 0≤n<1, which makes the approximations used here too much rough tobe accepted in this range. A real slight non-monotonic trend is exhibited by axial rations and masses related to rotational equilibrium configurations — i.e., when gravity at the equator is balanced by centrifugal force-with extremum points for 4.8<n<4.85 in both cases. The same holds for masses related to spherical configurations, as already pointed out by Seidov and Kuzakhmedov (1978). Finally, it is shown that isotrophic, one-component models of this paper might provide the required correlation between the ratio of a typical rotation velocity to a typical peculiar velocity and the ellipticity, for about \(\tfrac{3}{4}\) of elliptical systems for which observations are available.  相似文献   

17.
Photoelectric observations of the eclipsing variable β Per, were obtained inUBV standard system, and new elements for the primary minimum were determined as $$J.D. = 2445641.5135,O - C = 0_.^d 0.009.$$ The light curves of the system were analysed using Fourier techniques in the frequency-domain. The fractional radii of both components are $$r_1 = 0.217 \pm 0.002,r_2 = 0.233 \pm 0.002andi = 85.5 \pm 0.5.$$ Absolute elements were derived and the effective temperatures are $$T_1 = 11800K,T_2 = 5140K.$$   相似文献   

18.
In a previous paper, Hayliet al. (1983), two families of periodic orbits in the three-dimensional potential $$U = \frac{1}{2}(Ax^2 + By^2 + Cz^2 ) - \varepsilon xz^2 - nyz^2 $$ with \(\sqrt A :\sqrt B :\sqrt C = 6:4:3\) and ?=0.5 were described. It was found empirically that the characteristic curves of the two families intersect in the space (x0, y0, η) for |η|?0.2. This property is demonstrated in the present paper by writing explicitely the Poincaré mapping and by giving an approximation directly comparable with the numerical results obtained in Hayliet al. (1983). It is thus shown that one family bifurcates off the other.  相似文献   

19.
In previous publications the author has constructed a long-periodic solution of the problem of the motion of the Trojan asteroids, treated as the case of 1:1 resonance in the restricted problem of three bodies. The recent progress reported here is summarized under three headings:
  1. The nature on the long-periodic family of orbits is re-examined in the light of the results of the numerical integrations carried out by Deprit and Henrard (1970). In the vicinity of the critical divisor $$D_k \equiv \omega _1 - k\omega _2 ,$$ not accessible to our solution, the family is interrupted by bifurcations and shortperiodic bridges. Parametrized by the normalized Jacobi constant α2, our family may, accordingly, be defined as the intersection of admissible intervals, in the form $$L = \mathop \cap \limits_j \left\{ {\left| {\alpha - \alpha _j } \right| > \varepsilon _j } \right\};j = k,k + 1, \ldots \infty .$$ Here, {αj(m)} is the sequence of the critical αj corresponding to the exactj: 1 commensurability between the characteristic frequencies ω1 and ω2 for a given value of the mass parameterm. Inasmuch as the ‘critical’ intervals |α?αj|<εj can be shown to be disjoint, it follows that, despite the clustering of the sequence {αj} at α=1, asj→∞, the family extends into the vicinity of the separatrix α=1, which terminates the ‘tadpole’ branch of the family.
  2. Our analysis of the epicyclic terms of the solution, carrying the critical divisorD k , supports the Deprit and Henrard refutation of the E. W. Brown conjecture (1911) regarding the termination of the tadpole branch at the Lagrangian pointL 3. However, the conjecture may be revived in a refined form. “The separatrix α=1 of the tadpole branch spirals asymptotically toward a limit cycle centered onL 3.”
  3. The periodT(α,m) of the libration in the mean synodic longitude λ in the range $$\lambda _1 \leqslant \lambda \leqslant \lambda _2$$ is given by a hyperelliptic integral. This integral is formally expanded in a power series inm and α2 or \(\beta \equiv \sqrt {1 - \alpha ^2 }\) .
The large amplitude of the libration, peculiar to our solution, is made possible by the mode of the expansion of the disturbing functionR. Rather than expanding about Lagrangian pointL 4, with the coordinatesr=1, θ=π/3, we have expandedR about the circler=1. This procedure is equivalent to analytic continuation, for it replaces the circle of convergence centered atL 4 by an annulus |r?1|<ε with 0≤θ<2π.  相似文献   

20.
Several authors (Basano and Hughes, 1979; ter Haar and Cameron, 1963, Dermott, 1968; Prentice, 1976) give the revised Titius-Bode law in the form $$r_n = r_o C^n ,$$ wherer n stands for the distance of thenth planet from the Sun;r o andC are constant. They pointed out, in addition, that regular satellites systems around major planets obey also that law. It is now generally thought that the Kant-laplace primeval nebula accounts for the origin and evolution of the solar system (Reeves, 1976). Furthermore, it is shown (Prentice, 1976) that rings, which obey the Titius-Bode law, are formed through successive contractions of the solar nebula. Among difficulties encountered by Prentice's theory, the formation of regular satellites similar to the planatery system is the most important one. Indeed, the starting point of the planetary system is a rotating flattened circular solar nebula, whereas a gaseous ring must be the starting point of satellites systems. As far as the Titius-Bode law is concerned, we have the feeling that orbits of planets around the Sun and of satellites around their primaries do not depend on starting conditions. That law must be inherent to gravitation, in the same manner that electron orbits depend only on the atomic law instead of the starting conditions under which an electron is captured. If it is correct, then one may expect to formulate similarity between the T-B law and the Bohr law in the early quantum theory. Such a similarity is found (Louise, 1982) by using a postulate similar to the Bohr-Sommerfeld one — i.e., $$\int_{r_o }^{r_n } {U(r) dr = nk,}$$ whereU(r)=GM /r is the potential created by the Sun,k is a constant, andn a positive integer. This similarity suggests the existence of an unknown were process in the solar system. The aim of the present paper is to investigate the possibility of such a process. The first approach is to study a steady wave encountered in special membrane, showing node rings similar to the Prentice's rings (1976) which obey the T-B law. In the second part, we try to apply the now classical Lindblad-Lin density wave theory of spiral galaxies to the solar nebula case. This theory was developed since 1940 (Lindblad, 1974) in order to account for the persistence of spiral structure of galaxies (Lin and Shu, 1964; Lin, 1966; Linet al., 1969; Contopoulos, 1973). Its basic assumption concerns the potential functionU expressed in the form $$U = U_0 + \tilde U,$$ whereU o stands for the background axisymmetric potential due to the disc population, and ?«U o is responsible of spiral density wave. Then, the corresponding mass-density distribution is \(\rho = \rho _o + \tilde \rho\) , with \(\tilde \rho \ll \rho _o\) . Both quantities ? and \(\tilde \rho\) must satisfy the Poisson's equation $$\nabla ^2 \tilde U + 4\pi G\tilde \rho = 0.$$ It is shown by direct observations that most spiral arms fit well with a logarithmic spiral curve (Danver, 1942; Considère, 1980; Mulliard mand Marcelin, 1981). From the physical point of view, they are represented by maxima of ? (or \(\tilde \rho\) ) which is of the form $$\tilde U = cte cos (q log_e r - m\theta ),$$ wherem is an integer (number of arms),q=cte, andr and θ are polar coordinates. The distancer is expressed in an arbitrary unit (r=d/do). In the case of an axisymmetric solar nebula (m=0), successive maxima of \(\tilde U\) are rings showing similar T-B law $$d = d_o C^n ,$$ withC=e 2 π/q constant, andn is a positive integer. It is noted, in addition, that the steady wave equation within the special membrane quoted above and the new expression of the Poisson's equation derived from (5) are quite similar and expressed in the form $$\nabla ^2 \tilde U + cte\tilde U/r^2 = 0.$$ This suggests that both spiral structure of galaxies and Prentice's rings system result from a wave process which is investigated in the last section. From Equation (2) it is possible to derive the wavelength of the assumed wave ‘χ’, by using a procedure similar to the one by L. De Broglie (1923). The velocity of the wave ‘χ’ process is discussed in two cases. Both cases lead to a similar Planck's relation (E=hv).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号