首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two copepod species, Calanus finmarchicus (a widespread North Atlantic species) and C. glacialis (an Arctic species), are dominant in the zooplankton of Arctic seas. We hypothesized that the anticipated warming in the Arctic might have different effects on the arctic and boreal species. The effect of temperature on egg production rate (EPR) in these species at temperatures of 0, 2.5, 5, 7.5, and 10°C under contrasting feeding conditions was assessed in 5-day-long experiments. The EPR of the fed C. finmarchicus increased with temperature over the entire tested range. On the contrary, the EPR of C. glacialis increased only in the range of 0–5°C and dropped with further temperature growth. The difference in the influence of temperature on reproduction of these two species is statistically significant. Feeding conditions have a considerable effect on the C. finmarchicus EPR. The EPRs of the female C. glacialis that fed or starved for 5 days displayed no significant difference. These results suggest that the C. finmarchicus EPR increases with temperature under favorable feeding conditions, whereas the C. glacialis EPR decreases at a temperature over 5°C independently of the feeding conditions. This allows for prediction of the shift in abundances of these two species in pelagic communities of Arctic seas in the case of a warming scenario.  相似文献   

2.
Data collected on a cruise in January 2008, using a laser optical plankton counter, conductivity–temperature–depth sensors, and a lowered acoustic Doppler current profiler, was used to study the mesoscale distribution and advection of overwintering Calanus finmarchicus in its deep water winter habitat off the shelf of northern Norway. The overwintering animals were generally located immediately below the Atlantic Water (AW) in Arctic Intermediate Water (AIW), in the 600–1200 m depth range. The depth of the interface between AW and AIW varied considerably in the area and this was clearly reflected in the C. finmarchicus distribution. Maximum abundance varied from about 80 ind m?3 to more than 200 ind m?3 at the different stations. Current measurements showed the richness of mesoscazle eddies, with speeds exceeding 70 cm s?1 at the surface and rapidly decreasing with depth. In the main overwintering layer the eddy features were also clearly seen, but with speeds generally below 20 cm s?1. C. finmarchicus were found in the whole survey area, but they were not homogeneously distributed. Advection of the copepods resulted in relatively high local rates of change in overwintering C. finmarchicus abundance with mean value of 8% per day in the area. It is clear that mesoscale physical processes greatly contribute to the variability in the abundance of overwintering C. finmarchicus off the shelf of northern Norway. The collected data are also a valuable addition to the generally sparse datasets on the C. finmarchicus winter distribution and the role of the Lofoten basin in the large scale system is also discussed.  相似文献   

3.
The feeding selectivity of Calanus finmarchicus was studied by carrying out three incubation experiments; two experiments with natural seawater sampled during spring bloom (Exp. 1) and post-bloom conditions (Exp. 2) and a third experiment with cultured dinoflagellates and ciliates (Exp. 3). In the first two experiments a gradient in ciliate concentration was created to investigate the potential for prey density dependent selective feeding of C. finmarchicus. Results of microplankton counts indicated C. finmarchicus to be omnivorous. Diatoms contributed chiefly to the diet during spring bloom conditions. Despite the high microphytoplankton biomass during the spring bloom (Exp. 1), ciliates were selected positively by C. finmarchicus when the ciliate biomass exceeded 6.5 μg C L 1. A selection in favor of large conic ciliates such as Laboea sp. and Strombidium conicum was indicated by positive selectivity indices. Ciliates were throughout positively selected by C. finmarchicus during Exp. 2, and selectivity indices indicated a negative selection of diatoms. The results from Exp. 3 showed that C. finmarchicus has the ability to switch from dinoflagellates to ciliates as sole food source, even if the dinoflagellate was offered in surplus. This suggests that other factors, such as nutrition may be of significance for the feeding selectivity of C. finmarchicus.  相似文献   

4.
The distribution and demography of Calanus finmarchicus, C. glacialis and C. hyperboreus were studied throughout their growth season on a basin scale in the Norwegian Sea using ordination techniques and generalized additive models. The distribution and demographic data were related to the seasonal development of the phytoplankton bloom and physical characteristics of water masses. The resulting quantified relationships were related to knowledge on life cycle and adaptations of Calanus species. C. finmarchicus was the numerically dominant Calanus species in Coastal, Atlantic and Arctic waters, showing strong association with both Atlantic and Arctic waters. C. hyperboreus and C. glacialis were associated with Arctic water; however, C. glacialis was occasionally observed in the Norwegian Sea and is probably an expatriate advected into the area from various origins. Demography indicated one generation per year of C. finmarchicus, a two-year life cycle of C. hyperboreus, and both one- and two-year life cycles for C. glacialis in the water masses where they were most abundant. For the examined Calanus species, young copepodites of the new generation seemed to be tuned to the phytoplankton bloom in their main water mass. The development of C. finmarchicus was delayed in Arctic water, and mis-match between feeding stages and the phytoplankton bloom may reduce survival and reproductive success of C. finmarchicus in Arctic water. Based on low abundances of C. hyperboreus CI–III in Atlantic water and main recruitment to CI prior to the phytoplankton bloom, we suggest that reproduction of C. hyperboreus in Atlantic water is not successful.  相似文献   

5.
The distribution of Calanus finmarchicus was studied on a transect across the central Greenland Sea, and on five transects from the Eurasian shelves across the Atlantic Inflow in the Arctic Ocean. Stage composition was used as an indicator for successful growth; gonad maturity and egg production were taken as indicators for reproductive activity. On the Arctic Ocean transects, these parameters were measured simultaneously from the sibling species Calanus glacialis. Response of egg production rate to different temperatures at optimal food conditions was very similar between both species in the laboratory. C. finmarchicus was present at all stations studied, but young developmental stages were only present close to the regions of submergence of Atlantic water under the Polar water. This together with a decreasing abundance and biomass from west to east along the Atlantic Inflow in the Arctic Ocean and reproductive failure indicates that C. finmarchicus is expatriated in the Arctic Ocean. We hypothesize that the late availability of food in the Arctic Ocean, rather than low temperature per se, limits reproductive success. Better reproductive success in the very low temperature regions of the Return Atlantic Current and the marginal ice zone in the Greenland Sea supports this hypothesis. The possibility for a replacement of C. glacialis by C. finmarchicus and consequences for the ecosystem after increasing warming of the Arctic are discussed.  相似文献   

6.
Zooplankton is a key group in North Atlantic and Arctic food chains, and assessment and minimization of adverse effects from petroleum activities to this resource are important. The potential direct effects of produced water discharges on the biomass of Calanus finmarchicus were evaluated using a fully coupled, high resolution 3D hydrodynamic-ecological model system (SINMOD). Several scenarios with varying effects of produced water concentrations were considered. In order to reduce numerical dilution of the produced water effluents, a “sub grid” model component of higher resolution (80 m horizontal resolution vs 800 m for the main model grid) was developed and implemented. The results show that dilution and dispersion of produced water varies between locations. In general, realistically simulated concentrations of produced water were too low to have significant effects on the C. finmarchicus biomass and reproduction according to the toxicity-dilution profiles used, even when the toxicity of the produced water was increased 10-fold. The decrease in C. finmarchicus biomass was partially compensated by a slight increase in production.  相似文献   

7.
We report on the variation in energy reserves of individual C5 copepodites of Calanus finmarchicus from the Newfoundland continental shelf and the Labrador Sea collected from surface and overwintering (or bottom) depths prior to, during and after the expected timing of the onset of diapause. Overall, the trend was for a decreasing average prosome length as the year progressed for all locations although the decline was smallest in the Labrador Sea and greatest in the deep waters of the continental shelf. The size of the oil sac was closely linked to the weight of the copepodite but the form of this relationship showed substantial variations with depth and season. We show a clear increase in the relative oil sac volume for C. finmarchicus between late spring and late summer, by which time some animals had descended to diapause depths. The progressive decrease in oil sac volume of animals sampled at depth in the Labrador Sea between September and December suggests a significant loss of energy reserves during diapause. From the distribution of volumes and body sizes in December we estimate that 23–53% of individuals would not be able to meet the energetic cost of moulting and early gonad development. Overall, some of our observations appear to invalidate earlier hypotheses concerning the governing role of lipids in the life history of C. finmarchicus. However, assessment of the factors that influence entry into dormancy should be based on the relative probabilities of alternative strategies for successful reproduction (e.g. entering dormancy vs. continuing into a second generation).  相似文献   

8.
The results of multiyear observations of the seasonal and inter-annual variability of the population structure, abundance, and biomass of the arctic calanoids copepod Calanus glacialis in the White Sea are presented. The spring season represents the most crucial period for the population’s seasonal dynamics. During the spring, the maximal abundance, biomass, and contribution of C. glacialis to the total zooplankton biomass is observed. The interannual variability of the abundance is closely related to the timing of the spring warming of the upper water column and the respective shifts of the onset of reproduction and the offspring development. The development of a new generation to the overwintering copepodite stage IV is usually completed three to four weeks later in the cold years compared to the warm ones. Our multiyear observations suggest that C. glacialis could be more tolerant of Arctic warming than it is usually believed. The high abundance of the C. glacialis population in the White Sea indicates that this arctic species is able to cope with the seasonal surface warming and should continue to do so, being provided with the cold water “refuge” in the deep sea.  相似文献   

9.
Continuous Plankton Recorder (CPR) sampling on the Newfoundland and Scotian shelves covers three multi-year periods characterised by negative (1962–1971), positive (1992–2000) and negative/neutral (2001–2003) values of the NAO index. Water temperatures respond differently to changes in the NAO in different regions: a positive NAO index tends to lead to reduced temperatures on the Newfoundland shelf and to increased temperatures on the central/western Scotian shelf, and a negative NAO index to the reverse. Since the 1960s, the hydrographic changes due to the NAO have been superimposed on a freshening of the water column throughout the region, which is attributed to increased contribution of Arctic water outflow. Changes in plankton abundance measured by the CPR for the three time periods were generally, but not always, similar on the Newfoundland and eastern and western regions of the Scotian shelf, although Arctic species (e.g. Calanus glacialis, Calanus hyperboreus) were notably more abundant and warm water species (e.g. Metridia lucens, euphausiids) less abundant on the Newfoundland shelf than on the Scotian shelf. Three categories of phytoplankton (colour, diatoms, dinoflagellates) increased in abundance in the 1990s, and these increases generally persisted into 2001–2003. This is believed to be a response to the persistent freshening of the water column, probably due to increased stratification. The Arctic species C. glacialis and C. hyperboreus also showed persistent increases in abundance after 1992, perhaps due to increased transport from the Arctic, although the abundance of the Arctic slope water species Metridia longa decreased. Two groups, Calanus 1–4 and euphausiids, both thought to play important roles in the food chain, showed persistent decreases in abundance after 1992, especially on the Newfoundland shelf. In all regions, Calanus finmarchicus 5–6, Oithona spp. and Centropages hamatus abundance changed in association with variations in the NAO, although no common mechanism could be identified. C. finmarchicus 5–6 abundance decreased in the 1990s and increased after 2001, while the other two species showed the opposite pattern. Centropages typicus and M. lucens abundance on the Scotian shelf increased with rising temperature. This is attributed to increased production rates for the former and an increased influx of warm, M. lucens-rich, slope water on to the shelf for the latter. A comparison between ring net and CPR sampling on the Newfoundland shelf suggests that the Calanus 1–4 category is dominated by C. finmarchicus and that late stage C. glacialis and C. hyperboreus are grossly under-sampled compared to late stage C. finmarchicus.  相似文献   

10.
We collected mesozooplankton samples in the upper 100 m in spring or early summer each year between 1995 and 2000 along a section from Hamilton Bank (Labrador) to Cape Desolation (Greenland), and along additional sections in spring 1997 and early summer 1995. The North Atlantic waters of the central basin were characterised by the presence of the copepods Calanus finmarchicus, Euchaeta norvegica and Scolecithrocella minor and euphausiids. Calanus glacialis, Calanus hyperboreus and Pseudocalanus spp. were associated with the Arctic waters over the shelves. Amongst the other enumerated groups larvaceans were concentrated over the shelves and around the margins. Amphipods, pteropods and the copepods Oithona spp. and Oncaea spp. showed no definable relationships with water masses or bathymetry, while the diel migrant ostracods and chaetognaths were confined to deep water. Metrida longa, also a strong diel migrant, and Microcalanus spp., a mainly deep water species and possible diel migrant, were both sometimes quite abundant on the shelves as well as in the central basin, consistent with their likely Arctic origins.Analysis of community structure along the section across the Labrador Sea indicated that stations could be grouped into five different zones corresponding to: the Labrador Shelf; the Labrador Slope; the western and central Labrador Sea; the eastern Labrador Sea and Greenland Slope; and, the Greenland Shelf. The boundaries between zones varied spatially between years, but community composition was relatively consistent within a given zone and a given season (spring versus early summer). The relationship between community composition and water masses was not entirely straightforward. For example, Labrador Shelf water was generally confined to the shelf, but in spring 2000 when it also dominated the adjacent slope zone, the community in the Labrador Slope zone was similar to those found in other years. Conversely, in spring 1997, when Arctic organisms were unusually abundant in the Labrador Slope zone, there was no increased contribution of shelf water. In addition, North Atlantic organisms were often found on the shelves when no slope or central basin water was present.Although other organisms were sometimes very abundant, the mesozooplankton preserved dry weight biomass was dominated everywhere by the three species of Calanus, which together always accounted for ≥70%. One species, C. finmarchicus, comprised >60% of the total mesozooplankton biomass and >80% of the abundance of large copepods in spring and summer throughout the central Labrador Sea. In western and central regions of the central basin average C. finmarchicus biomass was ca 4 g dry weight m−2 and average abundance, ca 17?000 m−2 over both seasons. Highest levels (ca 7 g dry weight m−2, >100?000 m−2) occurred in the northern Labrador Sea in spring and in eastern and southwest regions in early summer. C. hyperboreus contributed ca 20% of the total mesozooplankton biomass in the central basin in spring and <5% in early summer, while C. glacialis accounted for <1%. Over the shelves, C. hyperboreus contributed a maximum of 54% and 3.6 g dry weight m−2, and C. glacialis, a maximum of 29% and 1 g dry weight m−2, to the total mesozooplankton biomass.  相似文献   

11.
The trophic position of Calanus finmarchicus in the Trondheim Fjord in 2004 was determined through stable isotope analyses. Wild specimens were sampled monthly in the fjord and δ13C and δ15N signatures of the developmental stages from CIII to adults were measured. There were statistically significant differences in the δ13C and δ15N signatures of three identified groups: overwintered parental generation, developing new generation and new generation preparing for overwintering. C. finmarchicus individuals raised in a laboratory on a pure algal diet (Dunaliella tertiolecta and Isochrysis galbana) provided stable isotope signatures for purely herbivorous copepods. With these signatures as comparison, the trophic position of C. finmarchicus in the Trondheim Fjord in 2004 was determined as trophic level 2.4, thus indicating omnivory under natural conditions. Additionally, our data suggest that seasonal differences in the δ13C signatures of C. finmarchicus are due to the varying lipid content of the different developmental stages.  相似文献   

12.
Seasonal development of Calanus finmarchicus was studied in relation to the physical environment and phytoplankton bloom dynamics in the Norwegian Sea during eight basin-scale surveys from March to August 1995. Our main objective was to gain new knowledge about the life cycle of C. finmarchicus and its adaptation to the physical and biological environment of the Norwegian Sea. Time of spawning, estimated by temperature-dependent back-calculations from the occurrences of copepodite stage 1 (CIs), varied by water mass and occurred mainly during the phytoplankton pre-bloom and bloom periods. Recruitment to CI of the year's first generation (G1) generally occurred during the bloom and late bloom. The seasonal development of C. finmarchicus was progressively delayed from Coastal to Atlantic and to Arctic water, and from south to north within Atlantic and Arctic waters. This delay was partly linked to the phytoplankton bloom development that followed the same pattern, but development of C. finmarchicus also showed an increasing tendency to lag behind the phytoplankton development in colder waters. This may explain why C. finmarchicus are less successful in colder water. The consumption of nitrate was used as proxy for the seasonal history of phytoplankton development to aid interpretation of the lifecycle of C. finmarchicus. This approach allows us to align phytoplankton bloom and copepod development sequences despite temporal and geographical variation in bloom development, which otherwise tend to cause variability in quasi-synoptic and large-scale data. Two generations of C. finmarchicus were found in southern and northern regions of Coastal Water, and in southern Atlantic Water. In northern Atlantic Water and in Arctic Water, one generation was observed.  相似文献   

13.
Only a few historical assessments of the zooplankton biomass in the Arctic Ocean exist are difficult to compare due to methodological differences including incomplete sampling of the water column. We present assessments of the zooplankton biomass for 66 locations scattered over the Eurasian and Makarov Basins of the Arctic Ocean and analyze regional variability and factors affecting the biomass distribution. The study is based on material from several summer expeditions of RV Polarstern (1993–1998) that was collected and processed using consistent methods, i.e. stratified sampling of the entire water column from the bottom to the surface with very similar gear and standardized calculation of biomass. Total zooplankton biomass varied strongly from 1.9 to 23.9 g DW m−2 dry mass. Regional variability was mainly related to the circulation pattern, but local food availability was also important. A belt of elevated biomass along the Eurasian continental margin was associated with the advection of Atlantic pelagic populations within the Arctic Ocean Boundary Current along the Siberian shelves and returning branches along mid-ocean ridges. Biomass was highest in the core of the Atlantic inflow and remained rather stable along the continental margins, but species composition changed, pointing to different adaptation levels to local conditions by advected species. Biomass gradually decreased towards the shelves and basins and was lowest in the centers of the basins north of 85°N. In the slope region, three Calanus species (C. hyperboreus, C. glacialis, C. finmarchicus) and Metridia longa contributed most to the biomass, chaetognaths (Eukrohnia hamata) were also important. In the basins, C. hyperboreus was dominant, copepods made up to 97% of total biomass. Vertical distribution was similar at all stations with biomass maxima in the upper 50 m layer except for stations near Fram Strait and northern Kara Sea, the gateways of Atlantic water to the Arctic Ocean, where maxima where between 25 and 100 m. As there was only very little interannual variability of temperature and current velocity in the regions of the Atlantic inflow we suggest that the majority of our samples, collected in 1993 and 1995, represents the phase of the 1990s warm event in the Nordic Seas.  相似文献   

14.
The mean seasonal cycle and distribution of various life history stages of C. finmarchicus throughout the Georges Bank (GB)-Gulf of Maine (GOM) region were characterized based on 5966 MARMAP zooplankton samples collected during 106 surveys over a 10-year period (autumn 1977–autumn 1987). A high degree of seasonal and spatial variability in C. finmarchicus abundance throughout the region was evident in contoured portrayals of data, grouped into standard stations and 2-month “seasons”.Eight subareas of the Gulf of Maine-Georges Bank region were identified through cluster analysis of standard stations having similar seasonal patterns in mean abundance of C. finmarchicus stages C3, C4, C5 and adults. These were the northern Gulf of Maine (Northern GOM); southern Gulf of Maine (Southern GOM); Scotian Shelf-coastal Gulf of Maine (Scotian-Coastal GOM); Mass Bay; tidally mixed Georges Bank (Mixed GB); tidal front on the Bank separating mixed from seasonally stratified water (Tidal Front GB); seasonally stratified water on the Bank (Stratified GB) and the Continental Slope adjacent to Georges Bank (SLOPE).A distinct seasonal abundance cycle was present in all subareas, but, the magnitude and timing of annual maxima varied greatly among subareas. Peak abundance was reached early (March–April) in Mixed GB, Tidal Front GB and Mass Bay, and late (July–August) in Northern GOM and Scotian-Coastal GOM. Remaining subareas had maxima in May–June. Abundance increased 10-fold from January–February to March–April and decreased sharply from July–August to September–October in all areas except southern GOM and northern GOM. The amplitude of the annual cycle was weakest in northern GOM and southern GOM, where high concentrations of C. finmarchicus persisted year-round, and strongest in the tidally mixed shallow water on GB, where the sparsest densities of C. finmarchicus occurred most of the year. Abundance curves for the various areas converged in March–April, when C. finmarchicus was ubiquitously very abundant (> 104/10 m2), and diverged from September to December.C. finmarchicus stage distribution in the GB-GOM area was highly negatively correlated with mean water column temperature during the stratified season. This seemed more related to the hydrography of the region, which isolates warmer well mixed Georges Bank from the Gulf of Maine and the stratified areas on the Bank, than to temperature, because Calanus abundances decline on the Bank before water temperatures exceed their preferences.A large part of the spatial and seasonal variation in C. finmarchicus abundance and age structure appears to be tightly coupled to major hydrographic regimes and to major circulation patterns in the region. There was a sharp ecotone between well-mixed Georges Bank and the Gulf of Maine as defined by C. finmarchicus abundance patterns and life history distributions. The ecotone is present year-round but is most apparent during the stratified season (May–October), when thermohaline density gradients and the near-surface current jet along the northern flank are generally strongest. The Gulf of Maine had the highest abundances of C. finmarchicus, and lowest spatial and seasonal variation in the region, while tidally mixed Georges Banks displayed the opposite pattern. This indication of stable population centers in the Gulf of Maine would make it a major source of Calanus in the region, particularly during March–April. Distributional patterns also suggest a strong Calanus influence from Scotian Shelf water in northern Gulf of Maine and on the southern flank of Georges Bank.  相似文献   

15.
We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 °C water, with maximum abundances from 13-17 °C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 °C, with peak abundances from 0 to 9 °C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.  相似文献   

16.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   

17.
On a transect across the Lomonosov Ridge stratified zooplankton tows were made to the bottom at seven stations. A species inventory was established and compared with earlier observations in the Arctic Ocean. Differences between the Amundsen and Makarov basins are relatively small and correspond well with the general circulation patterns for Atlantic, Pacific, and neritic waters, suggesting slow mixing rates for the different basins. There were no remarkable differences in the species composition or their vertical distribution between the two sides of the Lomonosov Ridge. This indicates effective faunistic exchange across the ridge, although several bathy-pelagic species were almost or completely absent on top of the Ridge. Biomass showed a strong gradient along the transect, with a pronounced peak (9.5 g dry weight m−2) in the core of Atlantic water over the ridge, and minima over the deep basins. These differences were related to the effect of bottom topography for deep-living species, and the dynamics of the Atlantic layer for the meso- and epipelagic species. The maximum was formed mainly by the copepods Calanus hyperboreus and Metridia longa together with chaetognaths and ostracods. The presence of young developmental stages in some of the abundant species (C. hyperboreus, M. longa) suggests successful reproduction at all stations but C. finmarchicus was almost exclusively represented as old stages and adults. Comparison with earlier data on abundance and biomass from the Canada Basin (Russian Drift station “North Pole-22”) shows a pronounced difference with respect to both absolute quantities and relative composition. The copepod C. finmarchicus is completely absent in the central Canada Basin, and the portion of non-copepod zooplankton is dramatically decreased. This points to a reduced advection of Atlantic water or more severe food conditions in this basin.  相似文献   

18.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

19.
Copepods represent the major part of the dry weight of the mesozooplankton in pelagic ecosystems and therefore have a central role in the secondary production of the North Atlantic Ocean. The calanoid copepod species Calanus finmarchicus is the main large copepod in subarctic waters of the North Atlantic, dominating the dry weight of the mesozooplankton in regions such as the northern North Sea and the Norwegian Sea. The objective of this work was to investigate the relationships between both the fundamental and realised niches of C. finmarchicus in order to better understand the future influence of global climate change on the abundance, the spatial distribution and the phenology of this key-structural species. Based on standardised Principal Component Analyses (PCAs), a macroecological approach was applied to determine factors affecting the spatial distribution of C. finmarchicus and to characterise its realised niche. Second, an ecophysiological model was used to calculate the Potential Egg Production Rate (PEPR) of C. finmarchicus and the centre of its fundamental niche. Relationships between the two niches were then investigated by correlation analysis. We found a close relationship between the fundamental and realised niches of C. finmarchicus at spatial, monthly and decadal scales. While the species is at the centre of its niche in the subarctic gyre, our joint macroecological and macrophysiological analyses show that it is at the edge of its niche in the North Sea, making the species in this region more vulnerable to temperature changes.  相似文献   

20.
The present study focuses on horizontal spatial variability of benthic macrofauna associated with Patella ferruginea. Thirty-six samples collected at 12 transects belonging to 4 midlittoral sites along the rocky Tunisian coastline, were examined. A total of 44 species belonging to 5 taxa were found. Multivariate analysis applied on gathered data did not show a horizontal spatial variability at small scale (between transects), but at large scale, between sites as well as sectors. Thus, three groups of communities were identified (GI: Korbous and El Haouaria; GIIa: Zembra Island and GIIb: Kelibia). The distribution of species abundance within these groups revealed that crustaceans were the most abundant taxon, due to the overwhelming dominance of Chthamalus stellatus. This substratum appeared to create favourable micro-habitats for the installation of molluscs including gastropods. Regarding the low diversity index (H') and evenness (J), they seemed to reflect a disturbance and a demographic unbalance within these communities. The heterogeneity of substrate surface, created by C. stellatus specimens appeared to be caused by various complex interactions established between the key components of these communities in particular suspension feeders, predators, herbivorous molluscs and macroalgae. Thus, the dynamic status of each of these communities is the result of these complex interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号