首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
章雨旭 《地质论评》2018,64(2):64029999-64029999
contents,committee,backcover  相似文献   

6.
7.
8.
9.
10.
11.
The Saumane‐Venasque compound palaeovalley succession accumulated in a strongly tide‐influenced embayment or estuary. Warm‐temperate normal marine to brackish conditions led to deposition of extensive cross‐bedded biofragmental calcarenites. Echinoids, bryozoans, coralline algae, barnacles and benthic foraminifera were produced in seagrass meadows, on rocky substrates colonized by macroalgae and within subaqueous dune fields. There are two sequences, S1 and S2, the first of which contains three high‐frequency sequences (S1a, S1b and S1c). Sequence 1 is largely confined to the palaeovalley with its upper part covering interfluves. Each of these has a similar upward succession of deposits that includes: (i) a basal erosional surface that is bored and glauconitized; (ii) a discontinuous lagoonal lime mudstone or wackestone; (iii) a thin conglomerate generated by tidal ravinement; (iv) a transgressive systems tract series of cross‐bedded calcarenites; (v) a maximum flooding interval of argillaceous, muddy quartzose, open‐marine limestones; and (vi) a thin highstand systems tract of fine‐grained calcarenite. Tidal currents during stages S1a, S1b and S1c were accentuated by the constricted valley topography, whereas basin‐scale factors enhanced tidal currents during the deposition of S2. The upper part of the succession in all but S1c has been removed by later erosion. There is an overall upward temporal change with quartz, barnacles, encrusting corallines and epifaunal echinoids decreasing but bryozoans, articulated corallines and infaunal echinoids increasing. This trend is interpreted to be the result of changing oceanographic conditions as the valley was filled, bathymetric relief was reduced, rocky substrates were replaced as carbonate factories by seagrass meadows and subaqueous dunes, and the setting became progressively less confined and more open marine. These limestones are characteristic of a suite of similar cool‐water calcareous sand bodies in environments with little siliciclastic or fresh water input during times of high‐amplitude sea‐level change wherein complex inboard antecedent topography was flooded by a rising ocean.  相似文献   

12.
13.
14.
Abstract The Saint-Martin des Noyers Formation is interpreted as a slice of an island-arc system of Lower to Middle Palaeozoic age, located in the internal part of the Variscan orogen in Vendée (Armorican Massif, France). Metamorphosed igneous rocks range in composition from ultramafic to rhyolitic. The regular increase in the FeO/(FeO+MgO) ratio, from mafic to silicic samples, results in a systematic variability in the nature and composition of the metamorphic phases. In basaltic samples, the occurrence of relict garnet-barroisite assemblages suggests relatively high-pressure conditions for the peak of metamorphism. During a subsequent retrograde evolution, the primary barroisitic hornblendes recrystallized to texturally complex mixtures of actinolite and hornblende. Despite this complication, it is possible to decipher a P–T-t path based on amphibole chemistry. The P–T trajectory deduced is dominated by the effect of pressure and consistent with early underthrusting and subsequent tectonic uplift of the ancient arc of Saint-Martin des Noyers.  相似文献   

15.
16.
Lithostratigraphical and palynological investigations of a coastal cliff section at Kobbelgård, Møn (Denmark) reveal a sedimentary sequence of Weichselian age. Bedded clayey sediments are overlain by stratified silt, sand and occasional beds of clay and gravel. The clay was deposited in water, and most of the silt and sand is aeolian, forming fairly thick units of loess and sand-loess. The lower part of the sequence forms an anticlinal structure, probably of glacio-tectonic orìgìn. The upper part of the sequence appears to represent a depression filling. In the lower part of this, clayey layers alternating with loess deposits suggest wet conditions periodically. In the upper part, loess and fine sand were deposited, interfingering with slope sediments in a periglacial environment from around 24,000 BP almost until the Weichselian glacial maximum. Pollen investigations at the site point to three periods of vegetation. The lowest pollen sequence contains much Ericales, Empetrum and occasionally also Pinus , and is thought to be of Early Glacial or Lower Pleniglacial age. Overlying pollen-bearing strata with high proportions of herbs, including Artemisia , antedate a TL dating of c. 27,000 BP. An upper pollen sequence, derived from slightly organic layers in the depression fill, points to a palaeovegetation almost exclusively of herbs, with Artemisia as an important component. This vegetation is thought to represent a relatively moist site, and is TL dated to c. 24,000 P.  相似文献   

17.
Granulite facies magnesian metapelites commonly preserve a wide array of mineral assemblages and reaction textures that are useful for deciphering the metamorphic evolution of a terrane. Quantitative pressure, temperature and bulk composition constraints on the development and preservation of characteristic peak granulite facies mineral assemblages such as orthopyroxene + sillimanite + quartz are assessed with reference to calculated phase diagrams. In NCKFMASH and its chemical subsystems, peak assemblages form mainly in high‐variance fields, and most mineral assemblage changes reflect multivariant equilibria. The rarity of orthopyroxene–sillimanite–quartz‐bearing assemblages in granulite facies rocks reflects the need for bulk rock XMg of greater than approximately 0.60–0.65, with pressures and temperatures exceeding c. 8 kbar and 850 °C, respectively. Cordierite coronas mantling peak minerals such as orthopyroxene, sillimanite and quartz have historically been used to infer isothermal decompression P–T paths in ultrahigh‐temperature granulite facies terranes. However, a potentially wide range of P–T paths from a given peak metamorphic condition facilitate retrograde cordierite growth after orthopyroxene + sillimanite + quartz, indicating that an individual mineral reaction texture is unable to uniquely define a P–T vector. Therefore, the interpretation of P–T paths in high‐grade rocks as isothermal decompression or isobaric cooling may be overly simplistic. Integration of quantitative data from different mineral reaction textures in rocks with varying bulk composition will provide the strongest constraints on a P–T path, and in turn on tectonic models derived from these paths.  相似文献   

18.
Bortnikovite, a new mineral species that is an intermetallic compound of Pd, Cu, and Zn with the simplified formula Pd4Cu3Zn has been detected at the unique Konder placer deposit in the Ayan-Maya district, Khabarovsk krai. The primary source of this placer is a concentrically zoned alkaline ultramafic massif. The X-ray diffraction pattern is indexed on the assumption of a tetragonal unit cell: a = 6.00 ± 0.02 Å and c = 8.50 ± 0.03 Å, V = 306 ± 0.01 Å3, Z = 3, probable space group P4/mmm. The calculated density is 11.16 g/cm3; the mean microhardness VHN is 368 kg/mm2. In reflected light, the new mineral is white with a slight grayish beige tint; bireflectance, anisotropy, and internal reflections are not observed. The reflectance spectrum belongs to the concave group of the anomalous type. The measured values of reflectance are as follows: 56.9 (470 nm), 61.7 (546 nm), 63.4 (589 nm), and 65.4% (650 nm). The new mineral is intergrown with isoferroplatinum, titanite, perovskite, V-bearing magnetite, bornite, and chlorite. The origin of bortnikovite is related to the effect of alkaline fluid on ultramafic rocks. The new mineral is named in honor of Professor Nikolai Stefanovich Bortnikov, a prominent mineralogist and researcher of ore deposits and a corresponding member of the Russian Academy of Sciences. Bortnikovite is the first platinum group mineral that contains Zn as a major mineralforming element.  相似文献   

19.
The ancient city of Kibyra, which has been damaged by ancient earthquakes, is located on the middle part of Burdur‐Fethiye Fault Zone (SW Turkey). The existence of an active NNE‐SSW‐trending left‐lateral fault cutting the stadium of Kibyra has been previously discussed in many publications (Akyüz and Altunel, 1997 , 2001 ; Karabacak, 2011 ). Karabacak et al. ( 2013 ) also adhere to this view and restate it in the recent article published in Geoarchaeology. However, there is no evidence directly indicating a fault cutting the stadium and the earthquake damage to the stadium was most likely caused by ground shaking. In conclusion, the arguments, observations and interpretations presented by Karabacak et al. ( 2013 ) are misleading in key respects and must be reviewed.  相似文献   

20.
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号