首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
西北太平洋副热带模态水形成区声传播特性分析   总被引:3,自引:1,他引:3  
张旭  程琛  刘艳 《海洋学报》2014,36(9):94-102
利用Argo剖面数据和水声学数值模型,分析了西北太平洋副热带模态水(STMW)形成区因季节性环境差异所引起的水声传播变化特征。声场计算结果表明,STMW形成区域的声传播为近表层波导与会聚区的复合形式,其中会聚区终年存在,表面波导在秋、冬两季混合层加深的环境条件下出现,次表层波导在夏季STMW潜沉的环境条件下出现。上层海洋中两类不同形式的波导使表层和次表层的声能分布呈反相变化,波导内与波导外的声能差异可达10~15dB(声波频率为1 000Hz)。STMW的季节性变化还会引起会聚区的位置差异,具体情况与声源深度有关。声源在20m时,夏季会聚区距离最远,秋季、春季次之,冬季最近,夏季和冬季相差6.6km;声源在150m时,夏季会聚区距离缩短了3.1km,其他季节变化不大。  相似文献   

2.
北太平洋副热带模态水形成区混合层热动力过程诊断分析   总被引:2,自引:0,他引:2  
利用NCEP海洋数据和COADS海气通量资料,通过诊断分析,揭示了海表热力强迫、垂直夹卷、埃克曼平流和地转平流效应在北太平洋副热带模态水形成过程中的贡献。研究表明,在北太平洋副热带3个模态水形成海域冬季混合层降温过程中,海表热力强迫和垂直夹卷效应是主导因素,二者的相对贡献分别约为67%和19%(西部模态水)、53%和21%(中部模态水)、65%和30%(东部模态水);并且在东部模态水形成海域,埃克曼平流和地转平流皆是暖平流效应,而在西部和中部模态水形成海域,仅有地转平流是暖平流效应。进一步的分析表明,海洋平流(地转平流、埃克曼平流)对北太平洋副热带模态水形成海域秋、冬季混合层温度的年际、年代际异常有显著影响,在西部模态水形成海域,海表热力强迫(62%)和地转平流(32%)是导致混合层温度年际、年代际变化的主要因子;在中部模态水形成海域,混合层温度的年际、年代际变化是埃克曼平流(32%)、地转平流(30%)和海表热力强迫(25%)共同作用的结果;相对而言,东部模态水形成海域混合层温度的年际、年代际异常主要受海表热力强迫(67%)控制。  相似文献   

3.
The annual subduction rate of the North Pacific was calculated based on isopycnally averaged hydrographic climatology (HydroBase), high-resolution winter mixed-layer climatology (NWMLC), and various wind stress climatologies from ship reports, numerical weather prediction products, and satellite products. The calculation was performed using Lagrangian coordinates in the same manner as in previous works, except a less smoothed oceanic climatology (HydroBase and NWMLC) was used instead of a World Ocean Atlas. Differences in the wind stress climatologies have very little effect on subduction rate estimates. The subduction rate census for density classes showed peaks corresponding to subtropical mode water (STMW), central mode water (CMW), and eastern subtropical mode water (ESTMW). The deeper mixed layer and the associated sharper mixed-layer fronts in the present climatology resulted in a larger lateral induction, which boosted the subduction rate, especially for the potential density anomaly (σθ) range of the lighter STMW (25.0 < σθ < 25.2 kg m−3) and lighter CMW (26.0 < σθ < 26.2 kg m−3), compared to previous estimates. The renewal time of permanent pycnocline water was estimated as the volume of water divided by the subduction rate for each σθ class: 2–4 years for ESTMW (24.5 < σθ < 25.2 kg m−3), 2 years for the lighter STMW (25.0 < σθ < 25.3 kg m−3), 5–9 years for the denser STMW (25.3 < σθ < 25.6 kg m−3), 10–20 years for the lighter CMW (26.0 < σθ < 26.2 kg m−3), 20–30 years for the middle CMW (26.2 < σθ < 26.3 kg m−3), and 60 years or longer for the denser CMW (26.3 < σθ < 26.6 kg m−3). A comparison of the water volume and subduction rate in potential temperature–salinity (θS) space indicated that the upper permanent pycnocline water (25.0 < σθ < 26.2 kg m−3) was directly maintained by nondiffusive subduction of winter surface water, including STMW and lighter CMW. The lower permanent pycnocline water (26.2 < σθ < 26.6 kg m−3) may be maintained through the subduction of fresher and colder water from the subarctic–subtropical transition region and subsequent mixing with saltier and warmer water. Diagnosis of the potential vorticity (PV) of the subducted water demonstrated that the low PV of STMW was mainly due to the large subduction rate, whereas that of both ESTMW and CMW was due mainly to the small density advection rate (cross-isopycnal flow). Additionally, a relatively large subduction rate probably contributes to the low PV of part of the lighter CMW (ESTMW) formed in the region around 38°N and 170°W (28°N and 145°W), which is characterized by a relatively thick winter mixed layer and an associated mixed-layer front, causing a large lateral induction rate.  相似文献   

4.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   

5.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

6.
使用一个全球海洋环流模式的18 a(1993~2010 年)数据, 对北太平洋副热带中部模态水(CMW)潜沉区混合层内热收支的空间分布状况及其季节和年际变率特征进行了分析, 并重点讨论了热收支与太平洋年代际震荡(PDO)之间的相互关联。结果表明, CMW 潜沉区的热收支是海表热力强迫与海洋动力过程之间的平衡。其中混合作用, 特别是湍流扩散是海洋动力过程的主要分量, 对该海区混合层内部的热量耗散起到关键的作用。该海区的热收支具有显著的季节变化信号, 在春夏季与秋冬季存在明显的差异。热收支的年际变化与PDO 的超前滞后相关性分析表明, 该海区的混合层温度(MLT)具有显著的PDO 信号, 同时 PDO 与 MLT 两者随时间的变化信号( ?[P]/?t 与?[T]/?t )之间也有强相关性。?[P]/?t与海表热力强迫项(SEF)显著的相关性表明, SEF 可能会对PDO信号的产生及变化过程产生重要的影响;?[P]/?t 与夹卷项的高相关性则间接证明潜沉的 CMW 的温度存在 PDO 信号; 作为海洋动力过程的主体, 扩散项和平流项均会对PDO 信号变化做出滞后响应。本研究增进了对CMW 潜沉区混合层内海水温度变化特征的认识。  相似文献   

7.
南北半球副热带高压对赤道东太平洋海温变化的响应   总被引:16,自引:0,他引:16  
本文利用1974年1月到1996年12月重分析(NOAANCEP-NCARCDAS-1)全球500hPa位势高度场资料,及同期赤道太平洋各海区SST资料,研究了南北半球副热带高压的变化特征及其对赤道东太平洋SST变化的响应。结果表明,全球副热带高压的变化及对SST的响应,在南北两个半球有很好的一致性。全球副热带高压强度的变化与超前3个月SST的正相关最为显着。对SST响应最强烈的区域主要在南北纬30°之间的低纬,低纬地区局地SST对副热带高压也有强烈的影响。从10°到30°纬度,对SST的响应分别落后于赤道2~9个月。在中、高纬大气环流的响应表现为波列特征,对暖SST及冷SST的响应波列基本相反,但对暖SST的响应更为显着。海温和副热带高压的月际持续性有明显的季节变化,副热带高压9-10月的相关障碍可能与NinoC区SST8-9月的相关障碍低点有关。  相似文献   

8.
INTRODUCTIONDuring the 1960s, Bjerknes (1966, 1969) first noted that there had been strong relationshipbetween the tropical Pacific SST and atmospheric circulation. SST anomaly could affect tropicalatmospheric circulation by the Walker Circulation, and affect extratropical atmospheric circulationby the Hadley Circulation. When there was a "warm" event in the eastern tropical Pacific, ascending and sinking branch of the Hadley Circulation would strengthen, subtropical highs (SHs)and …  相似文献   

9.
The S/V Shoyo, of the Hydrographic Department, Japan Coast Guard, has conducted high-density expendable bathythermograph (XBT) measurements along the 32.5°N line in the North Pacific every year from 1990 to 1993 as a part of the Japanese-World Ocean Circulation Experiment (WOCE). These XBT data are analyzed here, focusing on year-to-year variations of the inventory and core layer temperature (CLT) of the North Pacific subtropical mode water (NPSTMW). Large year-to-year changes are found in the NPSTMW CLTs estimated in longitudes between 140°E and 160°E. CLT values were found of 17.4°C in 1990, 17.1°C in 1991, 17.3°C in 1992 and 17.6°C in 1993. Inspection of the wintertime westerlies over the formation area and sea surface temperature distribution revealed that this change in CLT can be qualitatively attributed to the strength of atmospheric cooling in the formation area in the previous winter. Although a large year-to-year variation of NPSTMW inventory was also found, it is hard to state any relationship between CLT and atmospheric forcing. There is a possibility that different observational seasons may affect the inventory. It has also been found that the thermocline depth in 1991 was shallower in the sea area east of 180° than in 1992 and 1993. Associated with this change, the North Pacific central mode water (NPCMW), characterized by thermostad with temperatures ranging from 14°C to 11°C, appears in the sea area east of 180° in the 1992 and 1993 cross sections. The 1993 cross section, which ranged from the Japanese coast to the west coast of North America, possessed another thermostad in the surface layer, with a temperature of about 17°C in the eastern part of the cross section, off California. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Southwest Pacific subtropical mode water: A climatology   总被引:1,自引:0,他引:1  
The large-scale distribution and changes in Southwest Pacific subtropical mode water (STMW) are investigated and discussed. The paper presents for the first time geographic maps showing the spatial distribution of STMW thicknesses, with a vertical temperature gradient <2.0 °C/100 m occupying the 14–20 °C range below the mixed layer depth, across the entire Southwest Pacific region. STMW changes in areal thickness extent, vertical cross-sectional area along selected transects, and total volume, are examined on seasonal and interannual time scales between 1973 and 1988.We find that STMW extends across the entire width of the Tasman Sea in a very broad swath between the Tropical Convergence in the north (just to the south of New Caledonia), the southeast Australian coast in the west to as far south as 39°S (likely due to the southward extension of the EAC), and eastwards along the Southern STMW boundary in a meandering pathway that broadly follows the Tasman Front. The total STMW volume across the region (i.e., west of 180°) varies seasonally by a factor of more than three between the estimated maximum of 6.6 (±0.5) × 1014 m3 in October and minimum of 1.9 (±0.4) × 1014 m3 in May. Interannual variations O (±0.5 × 1014 m3) are also observed in the spatial extent of the thick mode water and its total volume. El Niño composite maps show an anomalous thickening of the STMW during the El Niño year with October positive thickness anomalies in excess of +20 m (total volume anomaly of +0.6 × 1014 m3) manifested throughout the subtropical gyre interior as far north as New Caledonia. Total volume anomalies tend to be positive from January of the El Niño year through to the July following (18 months). The maximum correlation coefficient r = −0.3 between 3-monthly STMW volume anomalies and the Southern Oscillation index is statistically significant at the 95% confidence level. We conclude that during the anomalous cooling of the upper Southwest Pacific Ocean in the El Niño year, winter-time convection and STMW formation is enhanced across the region resulting in an El Niño – Southern Oscillation climate signal that is identifiable below the mixed layer by the increased STMW volume which persists through to the following winter. Finally, some evidence for the possible decadal modulation of the STMW variability is also discussed.  相似文献   

11.
冬季北太平洋流场异常主要模态与PDO及NPGO的关系   总被引:1,自引:0,他引:1  
采用复经验正交函数(EOF)分解和小波分析,对冬季北太平洋上层海流异常进行了统计动力诊断,并讨论了主要模态与北太平洋年代际振荡(PDO)模态和北太平洋环流振荡(NPGO)模态的关系。结果显示,冬季北太平洋上层洋流异常复EOF分解的第一模态是PDO在流场异常上的反映,第二模态则包含了NPGO的明显信息。主要依据有:(1)第一和第二模态的实时间系数序列分别有准20a和准13a的年代际变化周期,与PDO和NPGO模态的年代际变化周期相同;(2)第一和第二模态实时间系数与北太平洋海表面温度异常(SSTA)的回归系数场的空间分布分别与PDO和NPGO模态的空间结构相近。根据第一和第二模态上层洋流异常计算得到的垂直运动异常的分布,与SSTA的PDO和NPGO模态的空间分布类似,表明海盆尺度流场异常造成的垂直运动是形成PDO和NPGO模态的重要原因。  相似文献   

12.
根据Huang和Qiu 1995年的潜沉率计算公式,采用同化的海洋模式资料和海洋-大气界面的通量观测资料,计算了北太平洋副热带海域3个模态水形成区逐年的潜沉率,研究了潜沉率产生年际变化的机制.研究结果表明:西部、中部和东部3个模态水形成区潜沉率的年际变化主要周期分别为6,2~5和2 a;北太平洋副热带模态水的3个形成区的潜沉率都发现年代际的变化特征:在1985年以前,西部模态水形成区的潜沉率年际变化最为显著,但1985后年际变化振幅明显减小;在中部模态水形成区,1975~1992年间潜沉率随时间的变化的振幅较大,潜沉率在这段时间内的平均值也达到33.99 m/a,而在1970~1975年间和1993~1998年间潜沉率都小于20 m/a;西部副热带模态水形成区的潜沉率的年际变化与这里海面的净热通量的年际变化有很好的相关性,中部副热带模态水形成区潜沉率的年际变化则取决于局地Ekman流的年际变化,而在东部模态水形成区局地风应力旋度的变化直接影响潜沉率的大小.  相似文献   

13.
应用Argo资料分析西北太平洋冬、夏季水团   总被引:1,自引:0,他引:1  
应用Argo剖面浮标观测的温、盐度资料,分析了西北太平洋海域冬、夏季的温、盐度分布、水团结构及其分布。首先采用T-S点聚图法分析了该海域水团分布的基本情况,由点聚分析结果可知,该海域至少存在6种以上水团;再用模糊聚类软化法对水团作进一步划分,分别计算了该海域6至11类水团的F和△F值,结果表明,冬、夏季的△F值都以划分为8类时为最大,这与大洋水团的稳定性是一致的,因此,该海域冬、夏季水团以划分为8类最佳,它们分别是北太平洋热带表层水、北太平洋次表层水、北太平洋中层水、北太平洋副热带模态水、北太平洋深层水和赤道表层水,以及南太平洋次表层水和南太平洋中层水。  相似文献   

14.
赤道外北太平洋上层洋流异常分析   总被引:3,自引:0,他引:3  
路凯程  卢姁  张铭 《海洋通报》2011,30(1):29-36
采用复EOF分析方法.对全年各月份除赤道太平洋外的北太平洋海域的上层洋流异常做了统计动力诊断,并与赤道太平洋洋流异常做了比较:得到的主要结论有:北太平洋海域上层洋流的明显异常发生在日本本州岛以东、以南范围不大的海域(关键区)内,此关键区仅占整个北太平洋海域很小的一部分,而在该海域之外,洋流异常均非常小,虽该洋流异常的第...  相似文献   

15.
Silica cycling in the upper 175 m of the North Pacific Subtropical Gyre was examined over a two year period (January 2008-December 2009) at the Hawaii Ocean Time-series (HOT) station ALOHA. Silicic acid concentrations in surface waters ranged from 0.6 to 1.6 ??M, exhibiting no clear seasonal trends. Biogenic silica concentrations and silica production rates increased by an order of magnitude each summer following stratification of the upper 50 m reaching values of 157 nmol Si L−1 and 81 nmol Si L−1 d−1, in 2008 and 2009, respectively. Sea surface height anomalies together with analyses of variability in isothermal surfaces at 150-175 m indicated that the summer periods of elevated biogenic silica were associated with anticyclonic mesoscale features during both years. Lithogenic silica concentrations increased in the spring during the known period of maximum atmospheric dust concentrations with maximum values of 36 nmol Si L−1 in the upper 10 m. Dust deposition would enhance levels of dissolved iron in surface waters, but there was no response of diatom biomass or silica production to increases in near-surface ocean lithogenic silica concentrations suggesting iron sufficiency of diatom silica production rates.Low ambient silicic acid concentrations restricted silica production rates to an average of 43% of maximum potential rates. Si sufficiency only occurred during the summer period when diatom biomass was elevated suggesting that bloom diatoms are adapted to exploit low silicic acid concentrations. Annual silica production at HOT is estimated to be 63 mmol Si m−2 a−1 with summer blooms contributing 29% of the annual total. Diatoms are estimated to account for 3-7% of total phytoplankton primary productivity, but 9-20% of organic carbon export confirming past suggestions that diatoms are relatively minor contributors to primary productivity and autotrophic biomass, but important contributors to new and export production in oligotrophic open-ocean ecosystems.Annual silica production at HOT is nearly 4-fold lower than estimates at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea from the 1990s, but annual silica export at the base of the euphotic zone is similar between the two gyres indicating very different balances between silica production and its loss in surface waters. On a relative basis, BATS is a more productive system with respect to silica, where biogenic silica is recycled with high efficiency in surface waters; in contrast the NPSG is a lower productivity system with respect to silica, but where lower recycling efficiency leads to a much higher fraction of new silica production. The two gyres show contrasting long-term trends in diatom biomass as biogenic silica concentrations at HOT have been increasing since 1997, but they have been decreasing at BATS suggesting very different forcing of decadal trends in the contribution of diatoms in carbon cycling between these gyres. Combining the data from both gyres indicates that globally subtropical gyres produce 13 Tmol Si a−1, which is only 51% of previous estimates reducing the contribution of subtropical gyres to 5-7% of global annual marine silica production.  相似文献   

16.
张志春  袁东亮 《海洋科学》2015,39(5):114-119
针对海洋实测流速资料极其匮乏的事实, 利用2004 年1 月~2009 年12 月月平均的Argo 温盐格点资料, 结合改进的P-vector 方法重构北太平洋绝对地转流流场。与卫星高度计和实测流速的比较以及相关性分析表明, 重构的绝对地转流是可信的, 可以用来研究不同大尺度环流特征及其动力结构。可以为研究海洋动力过程和气候变化提供一套有用的流场数据。  相似文献   

17.
The formation of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) significantly contributes to the total uptake and storage of anthropogenic gases, such as CO2 and chlorofluorocarbons (CFCs), within the world's oceans. SAMW and AAIW formation rates in the South Pacific are quantified based on CFC-12 inventories using hydrographic data from WOCE, CLIVAR, and data collected in the austral winter of 2005. This study documents the first wintertime observations of CFC-11 and CFC-12 saturations with respect to the 2005 atmosphere in the formation region of the southeast Pacific for SAMW and AAIW. SAMW is 94% and 95% saturated for CFC-11 and CFC-12, respectively, and AAIW is 60% saturated for both CFC-11 and CFC-12. SAMW is defined from the Subantarctic Front to the equator between potential densities 26.80-27.06 kg m−3, and AAIW is defined from the Polar Front to 20°N between potential densities 27.06-27.40 kg m−3. CFC-12 inventories are 16.0×106 moles for SAMW and 8.7×106 moles for AAIW, corresponding to formation rates of 7.3±2.1 Sv for SAMW and 5.8±1.7 Sv for AAIW circulating within the South Pacific. Inter-ocean transports of SAMW from the South Pacific to the South Atlantic are estimated to be 4.4±0.6 Sv. Thus, the total formation of SAMW in the South Pacific is approximately 11.7±2.2 Sv. These formation rates represent the average formation rates over the major period of CFC input, from 1970 to 2005. The CFC-12 inventory maps provide direct evidence for two areas of formation of SAMW, one in the southeast Pacific and one in the central Pacific. Furthermore, eddies in the central Pacific containing high CFC concentrations may contribute to SAMW and to a lesser extent AAIW formation. These CFC-derived rates provide a baseline with which to compare past and future formation rates of SAMW and AAIW.  相似文献   

18.
El Ni?o–Southern Oscillation(ENSO)是热带太平洋海气作用最强的年际信号,其变化会引起全球气候异常,对东亚季风具有重要影响。2000年后中部型ElNi?o频繁发生,掀起了ENSO多样性研究热潮; El Ni?o的复杂性也对ENSO理论研究和预测提出了新的挑战。为进一步理解并深入研究ENSO物理机制,本文总结了近年来对两类ENSO的最新认识;特别对副热带太平洋通过海气界面"大气桥"和太平洋副热带-热带经向环流圈的内部经向翻转环流这一"海洋通道"与热带太平洋建立联系的相关成果进行了阐述,并对存在的关键问题进行了展望。  相似文献   

19.
A profiling float equipped with a fluorimeter, a dissolved oxygen (DO) sensor, and temperature and salinity sensors was deployed in the subtropical mode water (STMW) formation region of the North Pacific. It acquired quasi-Lagrangian, 5-day-interval time-series records from March to July 2006. The time-series distribution of chlorophyll showed a sustained and sizable subsurface maximum at 50–100 m, just above the upper boundary of the STMW, throughout early summer (May–July). The DO concentration in this lower euphotic zone (50–100 m) was almost constant and supersaturated in the same period, becoming more supersaturated with time. On the other hand, the DO concentration at 100–150 m near the upper boundary of the STMW decreased much more slowly compared with the main layer of STMW below 150 m, even though oxygen consumption by organisms was expected to be larger in the former depth range. The small temporal variations of DO in the lower euphotic zone and near the upper boundary of the STMW were reasonably explained by downward oxygen transport because of large diapycnal diffusion near the top of the STMW. Assuming that the oxygen consumption rate at 100–150 m was the same as that in the main layer of STMW and compensated by the downward oxygen flux, the diapycnal diffusivity was estimated to be 1.7 × 10−4 m2 s−1. Nitrate transport into the euphotic zone by the same large diffusion was estimated to be 0.8 mmol N m−2 day−1. All of the transported nitrate could have been used for photosynthesis by the phytoplankton; net community production was estimated to be 5.3 mmol C m−2 day−1.  相似文献   

20.
As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80–100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l−1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号