首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 A high pressure neutron powder diffraction study of portlandite [Ca(OH)2] has been performed at ISIS facility (U.K.); nine spectra have been collected increasing the pressure by steps, up to 10.9 GPa, by means of a Paris-Edinburgh cell installed on the POLARIS diffractometer. The tensorial formalism of the lagrangian finite strain theory and the Birch-Murnaghan equation of state have been used to determine, independently, two values of the bulk modulus of portlandite, obtaining K 0=38.3(±1.1) GPa [linear incompressibilities: K 0a=188.4(±9.9), K 0c=64.5(±2.5) GPa] and K 0=34.2(±1.4) GPa, respectively. The present results comply with values from previous measurements by X-ray diffraction [K 0=37.8(±1.8) GPa] and Brillouin spectroscopy [K 0=31.7(±2.5) GPa]. Reasonably, Ca(OH)2 has revealed to be bulkly softer than Mg(OH)2 [K 0=41(±2), K 0a=313, K 0c=57 GPa]. The Ca(OH)2 linear incompressibility values reflect the nature of forces acting to stabilize the (001) layer structure and, further, prove that the replacement Ca/Mg mainly affects the elastic properties in the (001) plane, rather than along the [001] direction. Data from a full refinement of the structure at room pressure are reported. Received January 12, 1996/Revised, accepted June 15, 1996  相似文献   

2.
Using powder X-ray diffraction of heated solids to pressures reaching 68 GPa, the pressure-volume-temperature (PVT) data on corundum Al2O3 and ɛ-Fe were determined with the following results: *Corundum,*Iron, *Al2O3*ɛ-Fe Isothermal bulk*258 (2)*164 (3)  modulus K'300, 1 (GPa) Pressure derivative K300, 1*4.88 (4)*5.36 (16) Temperature derivative*–0.020 (2)*–0.043 (3)  (∂K T,1 /∂T) P (GPa/K) Molar volume V300,1*25.59 (2)*6.76 (2)  (cm3/mol) Isobaric thermal expansion at 1 atm (0.101 MPa) is given by (K–1): α T =2.6 (2) 10–5+1.81 (9) 10–9 T–0.67 (6)/T 2 for corundum, and α T =5.7 (4) 10–5+4.2 (4) 10–9 T–0.17 (7)/T 2 for iron ɛ-Fe. Received: 1 March 1997 / Revised, accepted: 21 August 1997  相似文献   

3.
High-pressure and high-temperature experiments using a laser-heated diamond anvil cell (LHDAC) and synchrotron X-ray diffraction have revealed a phase transition in MgAl2O4. CaTi2O4-type MgAl2O4 was found to be stable at pressures between 45 and at least 117 GPa. The transition pressure of CaTi2O4-type phase in MgAl2O4 is much lower than that in the natural N-type mid-oceanic ridge basalt composition. The Birch–Murnaghan equation of state for CaTi2O4-type MgAl2O4 was determined from the experimental unit cell parameters with K 0=219(±6) GPa, K 0′=4(constrained value), and V 0=238.9(±9) Å3. The observed compressibility was in agreement with the theoretical compressibility calculated in a previous study. ε-MgAl2O4 was observed at pressures between 40 and 45 GPa, which has not been reported in natural rock compositions. The gradient (dP/dT slope) of the transition from the ε-type to CaTi2O4-type MgAl2O4 had a positive value. These results should resolve the dispute regarding the stable high-pressure phase of MgAl2O4, which has been reported in earlier studies using both the multi-anvil press and the diamond anvil cell.  相似文献   

4.
 Phase transitions in MgAl2O4 spinel have been studied at pressures 22–38 GPa, and at temperatures up to 1600 °C, using a combination of synchrotron radiation and a multianvil apparatus with sintered diamond anvils. Spinel dissociated into a mixture of MgO plus Al2O3 at pressures to 25 GPa, while it transformed to the CaFe2O4 (calcium ferrite) structure at higher pressures via the metastably formed oxide mixture upon increasing temperature. Neither the e-phase nor the CaTi2O4-type MgAl2O4, which were reported in earlier studies using the diamond-anvil cell, were observed in the present pressure and temperature range. The zero-pressure bulk modulus of the calcium-ferrite-type MgAl2O4 was calculated as K=213 (3) GPa, which is significantly lower than that reported by Yutani et al. (1997), but is consistent with a more recent result by Funamori et al. (1998) and that estimated by an ab initio calculation by Catti (2001). Received: 2 April 2002 / Accepted: 29 July 2002 Acknowledgements The authors thank Y. Higo, Y. Sueda, T.␣Ueda, Y. Tanimoto, A. Fukuyama, K. Ochi, F. Kurio and T. Kawahara for help in the in situ X-ray observations at SPring-8 (No: 2000A0061-CD-np and 2000B0093-ND-np). We also thank W.␣Utsumi, J. Ando and O. Shimomura for advice and encouragement during this study, and N. Funamori and an anonymous reviwer for comments on the article. The present study is partly supported by the grant-in-aid for Scientific Research (A) of the Ministry of Education, Science, Sport and Culture of the Japanese government (no: 11694088).  相似文献   

5.
The equation of state and crystal structure of pyrope were determined by single crystal X-ray diffraction under hydrostatic conditions to 33 GPa, a pressure that corresponds to a depth of about 900 km in the lower mantle. The bulk modulus K T0 and its pressure derivative K ' T0 were determined simultaneously from an unweighted fit of the volume data at different pressures to a third order Birch-Murnaghan equation of state. They are 171(2) GPa and 4.4(2), respectively. Over the whole pressure range, MgO8 polyhedra showed the largest compression of 18.10(8)%, followed by AlO6 and SiO4 polyhedra, with compression of 11.7(1)% and 4.6(1)%, respectively. The polyhedral bulk moduli for MgO8, AlO6 and SiO4 are 107(1), 211(11) and 580(24) GPa, respectively, with K ' T0 fixed to 4. Significant compression of up to 1.8(1)% in the very rigid Si−O bonding in pyrope could be detected to 33 GPa. Changes in the degree of polyhedral distortion for all three types of polyhedra could also be observed. These changes could be found for the first time for AlO6 and SiO4 in pyrope. It seems that the compression of pyrope crystal structure is governed by the kinking of the Al−O−Si angle between the octahedra and tetrahedra. No phase transition could be detected to 33 GPa. Received: 24 March 1997 / Revised, accepted: 29 July 1997  相似文献   

6.
We have determined the P-V equation of state of Al-rich H-bearing SiO2 stishovite by X-ray powder diffraction at pressures up to 58 GPa using synchrotron radiation. The sample contained 1.8 wt% Al2O3 and up to 500 ppm H2O, and had a composition that would coexist with Mg-silicate perovskite in a subducted slab. By fitting a third-order Birch-Murnaghan equation of state to our compression data, we obtained a bulk modulus K T0=298(7) GPa with K′=4.3(5). With K′ fixed to a value of 4, the bulk modulus K T0=304(3) GPa. Our results indicate that Al3+ and H+ have a small effect on the elastic properties of stishovite. Compared with data obtained up to 43.8 GPa, peak intensities changed and we observed a decreased quality of fit to a tetragonal unit cell at pressures of 49 GPa and higher. These changes may be an indication that the rutile↔CaCl2 transition occurs between these pressures. After laser annealing of the sample at 58.3(10) GPa and subsequent decompression to room conditions, the cell volume is the same as before compression, giving strong evidence that the composition of the recovered sample is also unchanged. This suggests that Al and H are retained in the sample under extreme P-T conditions and that stishovite can be an agent for transporting water to the deepest lower mantle.  相似文献   

7.
 P–V–T measurements on magnesite MgCO3 have been carried out at high pressure and high temperature up to 8.6 GPa and 1285 K, using a DIA-type, cubic-anvil apparatus (SAM-85) in conjunction with in situ synchrotron X-ray powder diffraction. Precise volumes are obtained by the use of data collected above 873 K on heating and in the entire cooling cycle to minimize non-hydrostatic stress. From these data, the equation-of-state parameters are derived from various approaches based on the Birch-Murnaghan equation of state and on the relevant thermodynamic relations. With K′0 fixed at 4, we obtain K0=103(1) GPa, α(K−1)=3.15(17)×10−5 +2.32(28)×10−8 T, (∂KT/∂T)P=−0.021(2) GPaK−1, (dα/∂P)T=−1.81×10−6 GPa−1K−1 and (∂KT/∂T)V= −0.007(1) GPaK−1; whereas the third-order Birch-Murnaghan equation of state with K′0 as an adjustable parameter yields the following values: K0=108(3) GPa, K′0=2.33(94), α(K−1)=3.08(16)×10−5+2.05(27) ×10−8 T, (∂KT/∂T)P=−0.017(1) GPaK−1, (dα/∂P)T= −1.41×10−6 GPa−1K−1 and (∂KT/∂T)V=−0.008(1) GPaK−1. Within the investigated P–T range, thermal pressure for magnesite increases linearly with temperature and is pressure (or volume) dependent. The present measurements of room-temperature bulk modulus, of its pressure derivative, and of the extrapolated zero-pressure volumes at high temperatures, are in agreement with previous single-crystal study and ultrasonic measurements, whereas (∂KT/∂T)P, (∂α/∂P)T and (∂KT/∂T)V are determined for the first time in this compound. Using this new equation of state, thermodynamic calculations for the reactions (1) magnesite=periclase+CO2 and (2) magnesite+enstatite=forsterite+CO2 are consistent with existing experimental phase equilibrium data. Received September 28, 1995/Revised, accepted May 22, 1996  相似文献   

8.
 Using lattice dynamic modelling of pure MgSiO3 clinopyroxenes, we have be able to simulate the properties of both the low-clino (P21/c) and a high-density-clino (C2/c) phases and our results are comparable with the high pressure (HP) X-ray study of these phases (Angel et al. 1992). The transition between the two phases is predicted to occur at 6GPa. The volume variation with pressure for both phases is described by a third-order Birch-Murnaghan equation of state with the parameters V 0 low=31.122 cm3·mol−1, K T0 low= 107.42 GPa, K′ T0 low=5.96, V 0 high=30.142 cm3·mol–1, K T0 high102.54 GPa and K′ T0  high=8.21. The change in entropy between the two modelled phases at 6GPa is ΔS 6 Gpa=−1.335 J·mol−1·K−1 and the equivalent change in volume is ΔV 6 GPa=−0.92 cm3·mol−1, from which the gradient of the phase boundary δPT is 0.0014 GPa·K−1. The variation of the bulk modulus with pressure was also determined from the modelled elastic constants and compares very well with the EOS data. The reported Lehmann discontinuity, ∼220 km depth and pressure of 7.11Gpa, has an increase in the seismic compressional wave velocity, v p , of 7.14% using the data given for PREM (Anderson 1989). At a pressure of 7GPa any phase transition of MgSiO3 pyroxene would be between ortho (Pbca) and high-clino. We find the value of v p at 7GPa, for modelled orthoenstatite (Pbca), is 8.41 km·sec−1 and that for the modelled high-clino phase at 7GPa is 8.93 km·sec−1, giving a dv p /v p of 6.18%. Received: July 26, 1996 / Revised, accepted: September 27, 1996  相似文献   

9.
 Physical properties including the equation of state, elasticity, and shear strength of pyrite have been measured by a series of X-ray diffraction in diamond-anvil cells at pressures up to 50 GPa. A Birch–Murnaghan equation of state fit to the quasihydrostatic pressure–volume data obtained from laboratory X-ray source/film techniques yields a quasihydrostatic bulk modulus K 0T =133.5 (±5.2) GPa and bulk modulus first pressure derivative K 0T =5.73 (±0.58). The apparent equation of state is found to be strongly dependent on the stress conditions in the sample. The stress dependency of the high-pressure properties is examined with anisotropic elasticity theory from subsequent measurements of energy-dispersive radial diffraction experiments in the diamond-anvil cell. The calculated values of K 0T depend largely upon the angle ψ between the diffracting plane normal and the maximum stress axis. The uniaxial stress component in the sample, t3−σ1, varies with pressure as t=−3.11+0.43P between 10 and 30 GPa. The pressure derivatives of the elastic moduli dC 11/dP=5.76 (±0.15), dC 12/dP=1.41 (±0.11) and dC 44/dP=1.92 (±0.06) are obtained from the diffraction data assuming previously reported zero-pressure ultrasonic data (C 11=382 GPa, C 12=31 GPa, and C 44=109 GPa). Received: 21 December 2000 / Accepted: 11 July 2001  相似文献   

10.
A pressure-volume-temperature data set has been obtained for lawsonite [CaAl2Si2O7(OH)2.H2O], using synchrotron X-ray diffraction and an externally heated diamond anvil cell. Unit-cell volumes were measured to 9.4 GPa and 767 K by angle dispersive X-ray diffraction using imaging plates. Phase changes were not observed within this pressure-temperature range, and lawsonite compressed almost isotropically at constant temperature. The P-V-T data have been analyzed using a Birch- Murnaghan equation of state and a linear equation of state expressed as β=–1/V0 (∂V/∂P) T . At room temperature, the derived equation of state parameters are: K 0=124.1 (18) GPa K'0 set to 4) and β–1=142.0(24) GPa, respectively. Our results are intermediate between previously reported measurements. The high-temperature data show that the incompressibility of lawsonite decreases with increasing temperature to ∼500 K and then increases above. Hence, the second order temperature derivative of the bulk modulus is taken into account in the equation of state; a fit of the volume data yields K 0=123.9(18) GPa, (∂K/∂T)P=–0.111(3) GPa K–1, (∂2 K/∂T 2)P=0.28(6) 10–3 GPa K–2, α0=3.1(2) 10–5 K–1, assuming K'0=4. Received: 2 June 1998 / Revised, accepted: 12 Ocotber 1998  相似文献   

11.
The natural norbergite, Mg2.98Fe0.01Ti0.02Si0.99O4(OH0.31F1.69) is examined by synchrotron X-ray diffraction analysis at pressures up to 8.2 GPa. The measured linear compressibilities of the crystallographic axes are β a  = 2.18(4) × 10−3, β b  = 2.93(7) × 10−3, and β c  = 2.77(7) × 10−3 (GPa−1), respectively and the calculated isothermal bulk modulus of the norbergite is K T = 113(2) GPa based on the Birch–Murnaghan equation of state assuming a pressure derivative of K′ = 4. The crystal structures of norbergite are refined at room temperature and pressures of 4.7, 6.3, and 8.2 GPa, yielding R values for the structure refinements of 4.6, 5.3, and 5.3%, respectively. The bulk moduli of the polyhedral sites are 293(15) GPa for the tetrahedron, 106(5) GPa for the M2 octahedron, 113(2) GPa for the M3 octahedron, and 113(3) GPa for the total void space. The bulk modulus exhibits a good linear correlation with the filling factor for polyhedral sites in structures of the humite minerals and forsterite, reflecting the Si4+ + 4O2− ⇔ □ + 4(OH, F) substitution in the humite minerals. Moreover, two simply linear trends were observed in the relationship between bulk modulus and packing index for natural minerals and dense hydrous magnesium silicate minerals. This relationship would reflect that the differences in compression mechanism were involved with hydrogen bonding in these minerals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   

13.
The unit-cell parameters of two columbite samples along the (Fe,Mn)Nb2O6 solid solution were measured by means of high-pressure single-crystal X-ray diffraction up to pressures of 7 GPa. The compressional behaviour of these minerals was studied as a function of composition and degree of order. The P–V data of all the samples were fitted with a third-order Birch–Murnaghan equation of state. For the two samples with different compositions but identical degree of order the substitution of Mn for Fe causes a decrease of the bulk modulus K T0, from 153(1) to 146(1) GPa, without any effect on the pressure first derivative K′. For the two samples with the same composition, cation ordering causes an increase of the bulk modulus from 149(1) to 153(1) GPa and of the pressure first derivative from 4.1(2) to 4.8(3). The compressional behaviour is anisotropic with a linear axial compressibility scheme β b > β c β a for all samples, regardless of composition and degree of order. Such anisotropy increases sligthly with increasing Mn content.  相似文献   

14.
The structural evolution with pressure and the equations of state of three members of the brownmillerite solid solution, Ca2(Fe2−x Al x )O5, have been determined by single-crystal X-ray diffraction up to a maximum pressure of 9.73 GPa. The compositions of the samples were x = 0.00 and x = 0.37 (with Pnma symmetry) and x = 0.55 (with I2mb symmetry). No phase transitions were observed in the experiments. The equation of state parameters determined from the pressure-volume data are K 0T = 128.0 (7) GPa, K0 = 5.8 (3) for the sample with x = 0.00, K 0T = 131 (2) GPa, K0 = 5.5 (4) for x = 0.37, and K 0T = 137.5 (6) GPa, K′0 = 4 for x = 0.55. The bulk modulus therefore increases with Al content, being 11% higher in the x = 0.55 sample than in the Al-free sample. The unit-cell compression is anisotropic, with the c-axis being stiffer than a or b, and the anisotropy increases with increasing Al content of the structure. The structural response to pressure of all samples is similar. The (Al,Fe)O4 tetrahedra and the (Al,Fe)O6 octahedra undergo approximately isotropic compression. There is an increase in the twists of the chains of corner-sharing (Al,Fe)O4 tetrahedra, and an increase in the tilts of the (Al,Fe)O6 octahedra, because these framework polyhedra are stiffer than the Ca–O bonds to the extra-framework Ca site. The alignment of the two shortest Ca–O bonds sub-parallel to [001] accounts for the relative stiffness of the c-axis and thus the elastic anisotropy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The ambient pressure elastic properties of single-crystal TiO2 rutile are reported from room temperature (RT) to 1800 K, extending by more than 1200 oK the maximum temperature for which rutile elasticity data are available. The magnitudes of the temperature derivatives decrease with increasing temperature for five of the six adiabatic elastic moduli (C ij ). At RT, we find (units, GPa): C 11=268(1); C 33=484(2); C 44=123.8(2); C 66=190.2(5); C 23=147(1); and C 12=175(1). The temperature derivatives (units, GPa K−1) at RT are: (∂C 11/∂T) P =−0.042(5); (∂C 33/∂T) P =−0.087(6); (∂C 44/∂T) P =−0.0187(2); (∂C 66/∂T) P =−0.067(2); (∂C 23/∂T) P =−0.025; and (∂C 12/∂T) P −0.048(5). The values for K S (adiabatic bulk modulus) and μ (isotropic shear modulus) and their temperature derivatives are K S =212(1) GPa; μ=113(1) GPa; (∂K S /∂T) P =−0.040(4) GPa K−1; and (∂μ/∂T) P =−0.018(1) GPa K−1. We calculate several dimensionless parameters over a large temperature range using our new data. The unusually high values for the Anderson-Gròneisen parameters at room temperature decrease with increasing temperature. At high T, however, these parameters are still well above those for most other oxides. We also find that for TiO2, anharmonicity, as evidenced by a non-zero value of [∂ln (K T )/∂lnV] T , is insignificant at high T, implying that for the TiO2 analogue of stishovite, thermal pressure is independent of volume (or pressure). Systematic relations indicate that ∂2 K S /∂TP is as high as 7×10−4 K−1 for rutile, whereas ∂2μ/∂TP is an order of magnitude less. Received: 19 September 1997 / Revised, accepted: 27 February 1998  相似文献   

16.
In-situ synchrotron X-ray diffraction (XRD) experiments of a natural apatite with the formula of Ca5(PO4)3F0.94Cl0.06 were carried out using a diamond anvil cell and angle-dispersive technique at Photon Factory (PF), Japan. Pressure–volume data were collected up to 7.12 GPa at 300 K. The pressures were determined from the ruby fluorescence spectra shift. The unit-cell parameters and volume decreased systematically with increasing pressure, and a reliable isothermal bulk modulus and its pressure derivative were obtained in this study. The third-order Birch–Murnaghan equation of state yielded the isothermal bulk modulus of KT=91.5(38) GPa, its pressure derivative KT= 4.0(11), and the zero-pressure volume V0=524.2(3) Å3.  相似文献   

17.
The thermoelastic parameters of synthetic Ca3Al2Si3O12 grossular garnet were examined in situ at high-pressure and high-temperature by energy dispersive X-ray diffraction, using a Kawai-type multi-anvil press apparatus coupled with synchrotron radiation. Measurements have been conducted at pressures up to 20 GPa and temperatures up to 1,650 K: this P, T range covered the entire high-P, T stability field of grossular garnet. The analysis of room temperature data yielded V 0,300 = 1,664 ± 2 ?3 and K 0 = 166 ± 3 GPa for K0 K^{\prime}_{0} fixed to 4.0. Fitting of our PVT data by means of the high-temperature third order Birch–Murnaghan or the Mie–Grüneisen–Debye thermal equations of state, gives the thermoelastic parameters: (∂K 0,T /∂T) P  = −0.019 ± 0.001 GPa K−1 and α 0,T  = 2.62 ± 0.23 × 10−5 K−1, or γ 0 = 1.21 for fixed values q 0 = 1.0 and θ 0 = 823 (Isaak et al. Phys Chem Min19:106–120, 1992). From the comparison of fits from two different approaches, we propose to constrain the bulk modulus of grossular garnet and its pressure derivative to K T0 = 166 GPa and KT0 K^{\prime}_{T0}  = 4.03–4.35. Present results are compared with previously determined thermoelastic properties of grossular-rich garnets.  相似文献   

18.
 Quantum-mechanical solid-state calculations have been performed on the highest-pressure polymorph of magnesium aluminate (CaTi2O4-type structure, Cmcm space group), as well as on the low-pressure (Fdm) spinel phase and on MgO and Al2O3. An ab initio all-electron periodic scheme with localized basis functions (Gaussian-type atomic orbitals) has been used, employing density-functional-theory Hamiltonians based on LDA and B3LYP functionals. Least-enthalpy structure optimizations in the pressure range 0 to 60 GPa have allowed us to predict: (1) the full crystal structure, the pV equation of state and the compressibility of Cmcm-MgAl2O4 as a function of pressure; (2) the phase diagram of the MgO–Al2O3–MgAl2O4 system (with exclusion of CaFe2O4-type Pmcn-MgAl2O4), and the equilibrium pressures for the reactions of formation/decomposition of the Fdm and Cmcm polymorphs of MgAl2O4 from the MgO + Al2O3 assemblage. Cmcm-MgAl2O4 is predicted to form at 39 and 57 GPa by LDA and B3LYP calculations, with K 0=248 (K′=3.3) and 222 GPa (K′=3.8), respectively. Results are compared to experimental data, where available, and the performance of different DFT functionals is discussed. Received: 31 January 2001 / Accepted: 16 May 2001  相似文献   

19.
The high-pressure and temperature equation of state of majorite solid solution, Mj0.8Py0.2, was determined up to 23 GPa and 773 K with energy-dispersive synchrotron X-ray diffraction at high pressure and high temperature using the single- and double-stage configurations of the multianvil apparatuses, MAX80 and 90. The X-ray diffraction data of the majorite sample were analyzed using the WPPD (whole-powder-pattern decomposition) method to obtain the lattice parameters. A least-squares fitting using the third-order Birch-Murnaghan equation of state yields the isothermal bulk modulus, K T0  = 156 GPa, its pressure derivative, K′ = 4.4(±0.3), and temperature derivative (∂K T /∂T) P = −1.9(±0.3)× 10−2 GPa/K, assuming that the thermal expansion coefficient is similar to that of pyrope-almandine solid solution. Received: 5 October 1998 / Revised, accepted: 24 June 1999  相似文献   

20.
Polycrystalline specimens in the CaTiO3–CaSiO3 perovskite system have been hot-pressed in a 2000-ton uniaxial split-sphere apparatus (USSA-2000) at pressures up to 15 GPa and temperature of 1550°C, for the compositions CaTiO3, Ca(Ti0.75Si0.25)O3, Ca(Ti0.5Si0.5)O3. For the specimens with the bulk densities within 1% of the X-ray density, compressional and shear wave velocity measurements have been conducted using ultrasonic interferometry. The measured adiabatic bulk moduli (K s ) for the CaTiO3 and Ca(Ti0.5Si0.5)O3 perovskites are 175(1) and 188(1) GPa and shear moduli (G) of 106(1) and 109(1) GPa. In situ X-ray diffraction studies at high pressure and temperature resulted in isothermal values for K 0 of 170(5) and 185(5) GPa, respectively. For the unquenchable CaSiO3 perovskite, elasticity theory and systematics were used to predict K 0=212(7) GPa and G 0=112(5) GPa; this shear modulus is 37% less than that for (Mg,Fe)SiO3 perovskite, suggesting that CaSiO3 perovskite cannot be ignored in modeling the composition of the Earth’s lower mantle. Received: 27 June 1997 / Revised, accepted: 25 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号