首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
火山射气岩浆喷发作用研究进展   总被引:5,自引:2,他引:5  
孙谦  樊祺诚 《岩石学报》2005,21(6):1709-1718
射气岩浆喷发是一种特殊类型的火山活动,水在这类火山活动中起到至关重要的作用,且其喷发产物——低平火山口和基浪堆积物在我国乃至全世界都有广泛的分布。国际上对射气岩浆喷发的研究始于1921年,迄今为止已有80余年的历史。国内外许多学者运用火山地质学、岩石学、沉积学、物理火山学及数值模拟等多学科研究手段,对射气岩浆喷发作用及其产物进行详细的野外观测描述,并探讨其成因机制。本文在前人研究基础上,以我国南方北部湾周边第四纪火山区大量存在的射气岩浆喷发成因的低平火山口和基浪堆积物为研究对象,深入讨论了基浪堆积物的地质特征、射气岩浆喷发形成的基本条件、喷发过程的动力学机制以及基浪流的搬运过程等几方面重要问题,并对已有的研究成果进行了概括和总结,提出有待解决的难点,揭示了这类火山活动特有的属性。  相似文献   

2.
地浸砂岩型铀矿多用钻探手段提交储量计算参数,要获得正确的计算参数就必须正确对待氡即射气的修正问题,现将有关问题叙述如下。  相似文献   

3.
射气岩浆喷发是一种特殊类型的火山活动,水在这类火山活动中起着至关重要的作用,其喷发产物———低平火山口和基浪堆积物在中国乃至全世界都很常见。国际上对射气岩浆喷发的研究始于1921年。本文在前人研究基础上,以中国南方北部湾周边第四纪火山区大量射气岩浆喷发成因的低平火山口和基浪堆积物为研究对象,综合了近几年中国学者的研究成果,深入讨论了基浪堆积物的地质特征、射气岩浆喷发形成的基本条件、喷发过程的动力学机制,以及基浪流的搬运过程等重要问题,提出有待解决的难点,揭示了这类火山活动的特有属性。  相似文献   

4.
细碧岩浆热液金矿床的地幔射气成矿机制何大伦(成都理工学院,成都610059)关键词细碧岩浆,岩浆房,金矿床,地幔射气成矿本文所讨论的细碧岩浆热液金矿床位于川陕甘交界的勉略断裂带,大地构造位置处于扬子地台北缘基底内的南秦岭海西印支褶皱带和摩天岭加里东褶...  相似文献   

5.
多种新方法寻找隐伏矿的研究及效果   总被引:14,自引:4,他引:14  
用常规物化探方法寻找不同埋深的隐伏矿床难以奏效,应用土壤离子电导率测量、土壤吸附相态汞测量、地电提取离子测量、热释卤素测量和射气测量等方法开展综合找矿研究,取得了明显的找矿效果。  相似文献   

6.
根据两个不同时间内测得的电离电流比值,在很大程度上消除了由于R_n气测量中介质射气扩散的不均一性(射气系数变化)及土壤空气中较高的钍射气的影响所造成的困难。用射气方法普查含较劲地段时,常常因为介质射气扩散  相似文献   

7.
广西涠洲岛南湾火山喷发特征   总被引:3,自引:0,他引:3  
涠洲岛是北部湾内的一座火山岛, 火山熔岩构筑了该岛的基底, 岛南端的南湾火山喷发物形成了涠洲岛现代火山地貌.南湾火山喷发以岩浆喷发和射气岩浆喷发交替进行为特征, 火山碎屑岩和基浪堆积物向岛北延伸, 覆盖了大半个涠洲岛.选取了鳄鱼嘴和猪仔岛2个典型剖面, 对南湾火山喷发活动进行详细的观察和描述, 发现了诸如爬升层理、大型低角度交错层理和板状层理等射气岩浆喷发成因的基浪堆积物中特有的构造, 并且观察到射气岩浆作用的指相物质——增生火山砾.所有这些现象都反映了南湾火山是射气与岩浆交替喷发成因的复合火山, 其中射气岩浆喷发占据重要地位, 而喷发中心位于南湾海中.   相似文献   

8.
主要论述了细碧岩浆热液金矿床的地质特征,并以地质,碳、硫、氢、氧、铅同位素,稀土微量元素和包体成分资料,阐明了地幔射气成矿作用。  相似文献   

9.
本文从理论上严格地论证了射气扩散对γ测量结果的影响,并提出了用来确定γ测井中射气修正值的野外工作方法。在两个钻孔中的实验证明:射气扩散使γ测井的异常面积减少1.28-1.40倍。为了提高γ测井的质量,建议必须对γ测井结果进行射气扩散的修正。  相似文献   

10.
氡与氡的危害   总被引:11,自引:0,他引:11  
常桂兰 《铀矿地质》2002,18(2):122-128
本简述了氡的物理,化学特征和射气作用,介绍了氡测量方法,着重阐述了非矿山氡积累对人类健康产生的危害与防治,通过具体数据和实例说明了人类对氡危害的认识过程,提出了对环境生态评价及对氡侵害人体健康的一些防治措施。  相似文献   

11.
Radon measurements were made in the soil and spring/seepage water in and around an active landslide located along the Pindar river in the Chamoli District of Uttaranchal in Garhwal Lesser Himalaya, to understand the application of radon in geological disasters. The landslide is a compound slide i.e. a slump in the crown portion, and debris slide and fall in the lower part. The bedrock consists of gneisses and schists of the Saryu Formation of the Almora Group of Precambrian age. The presence of several small slump scars and debris slide/fall scars along the length of the slide indicates continuous downward movement. The radon concentrations in the present study are much lower in comparison to values reported from other regions. However, the present radon data show relative variation in the slide zone. The concentration of radon measured in landslide zones varies from 3.1 Bq/l to 18.4 Bq/l in spring water and from 2.3 kBq/m3 to 12.2 kBq/m3 in the soil gas of the debris. Along the section of the slide, the radon values in water and soil are slightly higher in the upper slopes i.e. toward the crown portion of the landslide as compared to the distal portion. The relatively low concentration of radon both in soil gas and water in the toe portion of the landslide may be due to the high porosity of the debris, which does not allow radon to accumulate in the soil and water, whereas, towards the crown portion, the high frequency of fractures increases the surface area due to particle size reduction, and the near absence of debris enhances the radon emanation in soil.  相似文献   

12.
土壤天然热释光测量在寻找滑坡体边界中的应用研究   总被引:1,自引:1,他引:1  
土壤天然热释光测量方法是一种累积型测氡方法。由于累积测氡时间长,其灵敏度和异常的重现性远比一般累积测氡及其子体方法好,因此,在地质领域得到了广泛的应用。在寻找滑坡体边界的应用中,取得的测量效果明显,表明该方法经济有效。  相似文献   

13.
Soil-gas radon measurements provide a valuable tool in assessing probable indoor radon levels on a regional basis. However, in Great Britain, seasonal weather changes can cause large changes in soil-gas radon concentration. Although this does not significantly constrain systematic radon potential mapping programmes, it does cause difficulties in responding to ad-hoc requests for site-specific radon investigations. The relationship between soil-gas radon and gamma spectrometry measurements made in the field with radon released from a representative sample of soil in the laboratory has been investigated as part of a program to develop a method of radon potential mapping and site investigation which can be used at any time of the year. Multiple soil and soil-gas samples were collected from sites underlain by bedrocks with widely varying radon potentials. For each geological unit, sites both free of and covered by glacial drift deposits were sampled. Soil and soil-gas samples were taken at the same depth of 60–100 cm. The effectiveness of these radon site investigation procedures has been evaluated by studying the relationship between the soil-gas radon, gamma spectrometry and radon emanation data with an independent estimate of the radon risk. The geologic radon potential (GEORP), which is the proportion of existing dwellings which exceed the UK radon Action Level (200 Bq m−3) for a particular combination of solid and drift geology within a defined geographic area, has been used for this study as the independent estimate of radon risk. Soil-gas radon, radon emanation and eU (equivalent uranium by field γ spectrometry) are all good geochemical indicators of radon risk (GEORP) in Derbyshire but only soil-gas radon correlates significantly with GEORP in Northamptonshire. Radon in soil gas discriminates more effectively between sites with different radon potential in Northamptonshire if soil permeability is also taken into account. In general, measurement of soil-gas radon in the field provides the most universally applicable indicator of radon potential. If soil-gas radon concentrations cannot be determined because of climatic factors, for example when the soil profile is waterlogged, measurement of radon emanation in the laboratory or measurement of eU can be used as radon potential indicators in some geological environments. This applies particularly in areas where the soil composition rather than the composition and permeability of the underlying rock or superficial deposits are the dominant controls of radon potential. It appears, therefore, that it may be necessary to use different radon site investigation methods according to the specific factors controlling radon emanation from the ground. In some cases no method will provide a reliable indicator of radon risk under unfavourable climatic conditions.  相似文献   

14.
The identification of extremely high indoor radon concentrations in the village Umhausen (Tyrol, Austria) initiated a scientific program to get information about the source and distribution of this noble gas. The high concentrations can not be related to U anomalies or large-scale fault zones. The nearby giant landslide of Koefels, with its highly fractured and crushed orthogneisses, are the only possible source of radon, despite the fact that the U and Ra content of the rocks is by no means exceptional. The reasons for the high emanation rates from the landslide are discussed and compared to results gained from a similar examination of the giant landslide of Langtang Himal (Nepal). The exceptional geologic situation in both cases, as well as the spatial distribution of different concentration levels, indicate that both landslides must be considered as the production sites of radon. Independent of the U and Ra contents of the rocks, the most important factors producing high emanation rates are the production of a high active surface area and circulation pathways for Rn-enriched soil air by brittle deformation due to the impact of the landslidemass.  相似文献   

15.
A comparison between single short-term radon measurements and annual radon measurements in basements shows that significant uncertainties should be associated with the short-term measurements. Activated charcoal radon monitors which measure radon over a 3 to 7 day interval yield measurements that should carry a ± 90% uncertainty in terms of estimating annual radon concentration. Alpha-track radon monitors which measure radon over a 3 month interval should carry a ± 30% uncertainty. Decisions about home purchases, home remediation and the development of risk characterizations may often be incorrect if currently popular but unrealistically low estimates of uncertainty are applied to short-term radon measurements. Optimal results are obtained from year-long alpha-track measurements.  相似文献   

16.
Canada is a vast country with most of the population living on a small portion of the land. However, for a national radon potential map, it is mandatory to cover the entire country including sparsely populated areas. Because of these characteristics, the radon map development for Canada is challenging. After briefly reviewing of radon map development in the world, this study considers a multi-tier approach to best use available however limited resources and to generate a national radon map in a timely fashion. In summary, radon potential maps for highly populated areas should be determined by direct indoor radon measurements where enough indoor radon data are available. In areas where indoor radon measurements are limited or not yet available, the radon potential maps could be developed from various data sources with a multi-factor scoring system including geological information on soil permeability, soil gas radon concentration and ground uranium concentration. In sparsely populated areas, radon potential maps can only be generated with geological predictive tools, especially in those areas where no houses have yet been built. Because indoor radon measurement data and geological information relevant to radon are very limited in Canada, a multi-step strategy is also worth considering in addition to the multi-tier approach.  相似文献   

17.
In 1996–1997, indoor radon values of more than 40,000 Bq/m3 and large seasonal and geographical variations in indoor air radon were reported from a residential area located on a highly permeable ice-marginal deposit. Geochemical analyses of bedrock, groundwater and sediments and comparisons between indoor radon values and soil radon values indicate that the indoor radon concentrations in this area are strongly affected by subterranean airflows caused by temperature differences between soil air and atmospheric air. The airflows concentrate the radon-laden soil air towards the topographic highest part of the deposit in winter and towards the topographic lowest part in summer. In areas where subterranean airflows are likely to occur, radon measurements performed both in summer and in winter provide the best estimate of annual average indoor radon concentrations, and assessments of indoor radon concentrations based on single soil gas measurements are not recommended.  相似文献   

18.
Indoor radon measurements were carried out in a total of 420 dwellings and 17 schools in Hail region of Saudi Arabia, using NTDs based radon dosimeters. The duration of the measurements was one year, from April 2008 to April 2009. The indoor radon concentrations varied from 4 to 513 Bq/m3 with an overall average of 45 Bq/m3 for all surveyed dwellings. These passive measurements were confirmed by the active measurements. The anomalous concentrations above 200 Bq/m3 were observed in 13 dwellings, representing 3.1 % of the total surveyed dwellings. In Inbowan village alone, it was found that 7.6 % of the dwellings have indoor radon concentration above 200 Bq/m3. The highest average indoor radon concentration of 64 Bq/m3 was found in Inbowan village while the lowest average of 24 Bq/m3 was found in Majasah village. The city of Hail showed an average indoor radon concentration of 49 Bq/m3. The average indoor radon concentration in one area located at the edge of the Aja Mountain in Hail city was 111 Bq/m3. The elevated indoor radon concentrations in many dwellings in the Hail region, prompted us to measure outdoor ground radon in such locations using gas monitor. It was found that radon concentrations at a depth of 0.5 m varied significantly from place to place ranging from 1.2 to 177 kBq/m3. The outdoor radon concentrations are generally correlated with the indoor radon measurements. Radon exhalations from construction materials and soil samples from the Hail region were also measured. It was found that radon exhalations from soil samples are higher than that of construction materials by a factor of at least 3 and reaching up to 11. These results indicate that soil is the main source of indoor radon. Geological interpretations of the results are also given.  相似文献   

19.
Site and laboratory investigation of the Slano blato landslide   总被引:2,自引:0,他引:2  
The Slano blato landslide is situated above the village of Lokavec, in the western part of Slovenia. This area is one of the seismically most active parts of the country. Considering just the last decade, movement of the landslide was observed in November 2000, when the displaced material reached a velocity of 60–100 m/day. Silty and clayey gravel above flysch layers of marl and sandstone formed the landslide mass.Geotechnical investigations of the landslide were performed in 2003 and 2004, when the depth of the landslide was determined, as well as the geotechnical parameters and the sliding mechanism. Rheological tests were also carried out for further analysis. Based on the investigation results and the observed landslide velocity, the landslide was classified as an earth flow. Inclinometer measurements showed that the landslide has two shear surfaces, with different behaviour shown as each.A stability analysis was carried out numerically by applying the Mohr–Coulomb and Burger elasto–plastic models. The Mohr–Coulomb model indicated that the high water level influences the landslide instability. In the case of the Burger elasto-plastic model, a higher velocity was calculated, at a water content of between 35 and 40%.  相似文献   

20.
Kita-Uebaru natural rock slope failure and its back analysis   总被引:3,自引:2,他引:1  
A large landslide occurred in Kita-Uebaru (or Asato) area of Nakagusuku village in Okinawa Island (Japan) on 10 June 2006 after a rainy period of about 9 days. The total rainfall was 126 mm from June 8 till the time of the landslide this period. This landslide destroyed several buildings and roads, and the total travel distance of the landslide was about 110 m. In this article, the authors were concerned with the initiation conditions of Kita-Uebaru landslide and post-failure motions of the landslide body. The observations made in the landslide area, structural geology analyses and outcomes of geotechnical investigations are described first. Then, possible causes of the landslide are investigated through back analyses using as inputs the geological structure and the strength properties of planes of discontinuities involved in the sliding processes. The final part of the article is concerned with the simulation of post-failure motions of the landslide body. The results of the investigations and back analyses indicate that the failure plane was bi-planar and the heavy torrential rainy period for about 3 days was the main cause of initiation of the landslide. The mechanical model presented in this article was capable of capturing the overall features of the landslide body following the initiation of the failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号