首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Upper Devonian and Lower Carboniferous Sequence Stratigraphy of South China   总被引:9,自引:0,他引:9  
SequencestratigraphyhashopaidmoreattentionforitSrelativelycompletetheoreticalsyStemandgreatsuchesinpracticesinceitwasadvancedinthe197ds.Integratingonthedataofbiostratiglaphy,lithostratigraphy,seismicstfstigraphy,geochendstryandsedirnentology,sequencestratigraphyattemptStoestablishachronostratigraphicframeworkandcormectsdepositionalsequencewithglobalsealevelchange,andhencemakeSitpossibletOpreciselycorrelatethestrataindifferentfactesareasoveraconsiderabledistance,evenovertheworld.TheUpperDevon…  相似文献   

2.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

3.
Doklady Earth Sciences - Isotope study of ore-bearing rocks at Fe–Mn rift deposits of the Atasu and Zhezdy (Dzhezdy) ore districts in Central Kazakhstan has been carried out for the first...  相似文献   

4.
The Carboniferous prototype sedimentary basin in the Tazhong (Central Tarimbasin) area is recognized as a compressive intracratonic depressional one. Three type Ⅰ sequenceboundaries and three type Ⅱ sequence boundaries can be identified in the CarboniferousSystem, which can accordingly be divided into five sedimentary sequences. These sequencespossess stratigraphic characters of the standard sequence and correspond to the depositionalstratigraphic unit of a third-order eustatic cycle. They can be regionally or globally correlatedwith each other. The framework of sequence stratigraphy of the intracratonict basin in thestudy area distinctly differs from that of the passive continental-margin basin in the lack ofdepositional systems of early-middle lowstand, poor development of the deeply incised valleyand condensed section of the maximum sea-flood, good development of type Ⅱ sequenceboundaries and coastal plain depositional systems coexisting with shelf-type fan deltas underwet climatic conditions, Which consequently led to the formation of a paralic lithofacies frame-work.  相似文献   

5.
Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhejiang Province, southern China, the candidate stratotype sec-tion of the global Permo-Triassic boundary, based on a detailed study of the biological,ecological and high-resolution allochthonous cyclic events, microfacies and depositional systems.Furthermore, the stacking pattern of the depositional systems across various Changxingian andGriesbachian sedimentary facies of the Lower Yangtze and the sequence stratigraphic frameworkare outlined with the Meishan section as the principal section. In this paper the habitat types offossil biota are applied to semiquantitative palaeobathymetry and the study of relative sea levelchanges.  相似文献   

6.
The Lower Jurassic is subdivided in ascending order into the Wulong, Kangdui and Yongjia Formations on the north slope of Mount Qomolangma, with a total thickness of 1362 m. They are thought to have been deposited respectively in the environments of the carbonate ramp fault-bounded basins and carbonate platform, with six sedimentary facies and six sub-facies. During the Early Jurassic, the Qomolangma area experienced strong faulting and subsidence, and was of a matured rift basin. The Lower Jurassic consists of eleven 3rd-order sequences, which can be grouped into three 2nd-order sequences and form a large transgressive-regressive cycle. The 3rd-order sequences and the corresponding sea-level changes recognized in the area can be correlated quite well with those set up in the western Tethys, and may have been caused by the eustatic fluctuations, while the 2nd-order sequences seem to be more closely related to the basement subsidence and the variation in sedimentary influx, indicating the evolution of th  相似文献   

7.
The study area is located in the east Tabas Block in Central Iran. Facies analysis of the Qal’eh Dokhtar Formation (middle Callovian to late Oxfordian) was carried out on two stratigraphic sections and applied to depositional environment and sequence stratigraphy interpretation. This formation conformably overlies and underlies the marly-silty Baghamshah and the calcareous Esfandiar formations, respectively. Lateral and vertical facies changes documents low- to high energy environments, including tidal-flat, beach to intertidal, lagoon, barrier, and open-marine. According to these facies associations and absence of resedimentation deposits a depositional model of a mixed carbonate–siliciclastic ramp was proposed for the Qal’eh Dokhtar Formation. Seven third-order depositional sequences were identified in each two measured stratigraphic sections. Transgressive systems tracts (TSTs) show deepening upward trends, i.e. shallow water beach to intertidal and lagoonal facies, while highstand systems tracts (HST) show shallowing upward trends in which deep water facies are overlain by shallow water facies. All sequence boundaries (except at the base of the stratigraphic column) are of the no erosional (SB2) types. We conclude eustatic rather than tectonic factors played a dominant role in controlling carbonate depositional environments in the study area.  相似文献   

8.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

9.
The Qom Formation comprises Oligo-Miocene deposits from a marine succession distributed in the Central Basin of Iran. It is composed of five members designated as A-F. Little previous work exists on the sequence stratigraphy. Based on an integrated study of sequence stratigraphy with outcrop data, wells and regional seismic profiles, the Qom Formation is interpreted as a carbonate succession deposited in a mid-Tertiary back-arc basin. There are two second-order sequences (designated as SS1 and SS2) and five third-order sequences (designated as S1-S5). Five distinct systems tracts including transgressive, highstand, forced regressive, slope margin and lowstand have been recognized. The relationship between the sequences and lithologic sub-units has been collated and defined (S1 to S5 individually corresponding to A-C1, C2-C4, D-E, the lower and upper portions of F); a relative sea level change curve and the sequence stratigraphic framework have been established and described in detail. The coincidence of relative sea level change between that of the determined back-arc basin and the world indicates that the sedimentary cycles of the Qom Formation are mainly controlled by eustatic cycles. The variable combination of the systems tracts and special tectonic-depositional setting causally underpin multiple sequence stratigraphic framework styles seen in the carbonates of the back-arc basin revealing: (1) a continental margin basin that developed some form of barrier, characterized by the development of multiple cycles of carbonate-evaporites; (2) a flat carbonate ramp, which occurred on the southern shelf formed by the lack of clastic supply from nearby magmatic islands plus mixed siliciclastics and carbonates that occurred on the northern shelf due to a sufficient clastics supply from the land; and (3) a forced regressive stratigraphic stacking pattern that occured on the southern shelf and in basin lows due to the uplifting of the southern shelf. Thick and widespread aggradational framework limestone usually occurs in the initial sequences (S1 and S3) of the supersequence, which led to preferential oil reservoir deposition but a lack of source and cap rocks, whereas the retrogradational and progradational framework limestone usually occurs in the later sequences (S2 and S4-S5) of the supersequence, which results in two perfect sets of source, reservoir and cap rock assemblies, so that the limestone in sub-member C2-C4 and the F-Member can be predicted as important objects for oil exploration.  相似文献   

10.
The Devonian-Carboniferous boundary in Bachu County of the Xinjiang Autonomous Region is identified by chemo-biostratigraphic methods and placed near the base of the Upper Member of the Bachu Formation. The important oil-reservoir bed of the Tarim Basin, the Donghe Sandstone, should not be attributed to the Early Carboniferous, because it has an age no later than the Frasnian. Gypsum beds and a Ni-Cr-Cu-Ti anomaly in the Devonian-Carboniferous boundary beds may have had an origin in a rifting-volcanic-hydrothermal process.  相似文献   

11.
Geology of Ore Deposits - Preore metasomatites of epithermal gold–silver deposits are formed by various types of hydrothermal solutions—from highly acidic and oxidized (argillization,...  相似文献   

12.
Lithology and Mineral Resources - The composition and depositional environments of the Tithonian(?)–Berriasian deposits in the Tonas River basin (Central Crimea) are considered. The paper...  相似文献   

13.
The Middle Proterozoic Chartai Group separated by two unconformities consists of three depositional se-quences: the Shujigou Formation-Zenglongchang Formation (DS Ⅰ), the Agulugou Formation (DS Ⅱ), andthe Liuhongwan Formation (DS Ⅲ). The carbonate platform and back-platform basin are the basic environ-ment model of the Chartai Group. The syndepositional faults on the oceanward side of the carbonate platformand large-scale slumping in the soft sediments are important marks of facies tracts. The newly establishedZenglongchan uplifting, an epeirogenetic uplifting, plays an important role in the formation of thepalaeogeographic framework of the Chartai Group. The stratigraphic correlation between the Chartai Groupand the Bayan Obo Group is made for the first time by using sequence stratigraphic principle and model estab-lished by P.R. Vail. The Chartai Group, which was deposited on the northern passive continental margin of theNorth China platfom, represents the platform cover.  相似文献   

14.
With a thickness of 3900 m, the Tazareh section is one of the thickest developments of the Shemshak Formation in the Alborz range. It overlies with sharp and disconformable contact the limestones and dolomites of the Lower–Middle Triassic Elikah Formation and is topped, again with a disconformable contact, by the marls and limestones of the Middle Jurassic Dalichai Formation. The nearly exclusively siliciclastic succession represents a range of environments, from fluvial channels, flood plains, swamps and lake systems to storm-dominated shelf, and a comparatively deep marine and partly dysoxic basin. The segment of the section between 2300 and 3500 m is exclusively marine and contains a moderately diverse ammonite fauna, ranging from the Middle Toarcian to the Upper Aalenian. The ammonite fauna comprises 21 taxa, among them the new genus Shahrudites with two new species, Shahrudites asseretoi and S. stoecklini from the Middle Aalenian Bradfordensis Zone. The other ammonites from the Shemshak Formation at Tazareh (as elsewhere in North and Central Iran) are exclusively Tethyan in character and closely related to faunas from western and central Europe. An ammonite-based correlation of Toarcian–Aalenian successions of the eastern Alborz with time-equivalent strata of the Lut Block, part of the Central-East Iranian Microcontinent (ca. 500 km to the south), suggests a strong influence of synsedimentary tectonics during the deposition of the upper Shemshak Formation.  相似文献   

15.
The chemical compositions of and the contents of CaCO3, free Fe2O3 and REE in the sediments of the Salawusu section have been analyzed to investigate the geochemical features of different sedimentary facies and explore their sedimentary enironmetnts during the Late Pleistocene.The con-tents of CaCO3, free Fe2O3 and ∑REE in lacustrine deposits of the middle part of the section are higher than those in the other parts ,except SiO2 which shows an opposite trend.According to the distribution characteristics of the components mentioned above, the section may be divided into four parts which are equivalent to those divided in terms of lithologic characters and sedimentary facies.More remarkable characteristics were observed with respect to the distribution of CaCO3, free Fe2O3,∑REE and SiO2/Al2O3 and FeO/Fe2O3 ratios, which can be adopted as the geochemical indices for paleoclimate division.From the above, four paleoclimate stages have been distinguished for the deposition process.The first stage ,dated at 0.20-0.15Ma, is characterized by a dry and cold climate,the second stage, ranging from 0.15 to 0.07 Ma ,by a warm and slightly dry climate,the third stage ,about 0.07-0.01Ma ,by a cold and humid climate;and prevailing in the last ten thorsand years is the fourth stage,with the climate changing graduall from warm-humid to warm-dry.  相似文献   

16.
The OligoceneeMiocene Qom Formation has different depositional models in the Central Iran,SanandajeSirjan and Urumieh-Dokhtar magmatic arc provinces in Iran.The Kahak section of the Qom Formation in the Urumieh-Dokhtar magmatic arc has been studied,in order to determinate its microfacies,depositional model and sequence stratigraphy.The textural analysis and faunal assemblages reveal ten microfacies.These microfacies are indicative of five depositional settings of open marine,patch reef,lagoon,tidal flat and beach of the inner and middle ramp.On the basis of the vertical succession architecture of depositional system tracts,four third-order sequences have been recognized in the OligoceneeMiocene Kahak succession of Qom Formation.Based on the correlation charts,the transgression of the Qom Sea started from the southeast and continued gradually towards the north.This resulted in widespread northward development of the lagoon paleoenvironment in the Aquitanian-Burdigalian stages.Also,the sequence stratigraphic model of the OligoceneeMiocene Qom Formation has an architecture similar to those that have developed from OligoceneeMiocene global sea level changes.  相似文献   

17.
INTRODUCTIONThe Shaiwa Section is located in the town ofSidazhai, Ziyun County, Guizhou Province, south western China ( Fig. 1 ). This area belongs to theNanpanjiang basin of the Yangtze platform. A greatdeal of work purely on the subdivision of the stratahas been carried out in this region (Guizhou Bureauof Geology and Mineral Resources, 1987). However,studies on recoveries of the paleoenvironments of thisarea are rarely reported. Due to rifting and su…  相似文献   

18.
1. IntroductionThe Qinghai-Tibetan Plateau is an importantregion for the study of the global change andstructural evolution history). The in-depth knowledgeon its uplift process is the ke}' to understand theformation and development of temporary ph}'sicalenvironment of China or even East Asia. Therefore.a large quantity of researchers have given muchmore attention on this field (Burbank et al.. l982;Fang Xiaornin et al.. 1995f Ruddoman. ]997f AnZhisheng et al.. 1998). The macroscopic e\'o…  相似文献   

19.
Most of the hinterland of the North China platform is devoid of Late Ordovician strata. The BaiyanhuaMountain section at Shetai Town is a standard section of the Upper Ordovician newly established in recentyears at the northernmost margin of the platform. This establishment directly involved the determination of thenorth boundary of the platform and the understanding of its evolutionary Listory. The area is quite differentfrom the binterland of the platform in Middle Ordovician rock types and sedimentary environments, with theformer characterized by frequent slope deposits and the latter consisting almost entirely of platform deposits.The present paper focuses on the petrographic features and sedimentary ervironments of the Middle-UpperOrdovician strata in the area, providing further theoretical support to the establishment of the section and fil-ling the gap in this respect.  相似文献   

20.
Doklady Earth Sciences - This paper reports on the lithological, micropaleontological, and chronometric data (radiocarbon dating) for one of the areas of the White Sea coast. The sedimentary...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号