首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文作者对COS-B卫星的两次观测数据进行了周期折叠分析,获得了来自PSR0740-28方向上的γ光子的周期位相脉冲结构.从两次不同观测数据中获得的相位图具有相似的结构,其对应的周期和周期变率值都在射电预期值附近;显著性分析表明,随机出现上述两个位相结构的概率不大于2×10-5.由此我们相信PSR0740-28是一颗新的γ射线脉冲星.  相似文献   

2.
By applying the fireball model of γ-ray burst with a central pulsar, the radiation fluxes of the afterglows of two γ-ray bursts, GRB970228 and GRB000301c, are calculated. The results of the calculation agree very well with the observations. The differing characters of the light curves with a “break” in the optical waveband R of the afterglows of two bursts are interpreted, in terms of differing pulsar parameter values.  相似文献   

3.
We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259−63 and PSR J0045−73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259−63 due to ‘inverse Compton drag' is small, but that this process may confine the wind of PSR J0045−73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259−63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the γ-ray emission from the unshocked wind may be detectable by atmospheric Cherenkov detectors or by the new generation of satellite-borne γ-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible.  相似文献   

4.
General relativistic and quantum-mechanical effects in the γ-ray radiation from neutron stars are studied in this paper. For three values of the magnetic dipole moment, we calculated the upper limit of the escaping energy of the γ-photon as a function of the angle between the line of sight and the magnetic axis, with and without these effects. We conclude that for low magnetic moments, the quantum-mechanical effects are unimportant but the general relativistic effects are to reduce significantly the upper limit. For high magnetic moments, the two effects nearly cancel out and the net effect is small. We discuss the implications of these results on the γ-ray spectrum.  相似文献   

5.
During the period of 1991–1993 two strong high energy γ-ray flares were observed by the Compton Gamma Ray Observatory in the flat spectrum radio source PKS 0528+134. They were associated with strong mm-radio outbursts with a few months time-delays. In this paper the spectral energy distributions (SED) of the radiations in the γ-hand X-ray and the IR-optical bands are analysed. It is shown that the high energy γ-ray radiation may be due to the inverse Compton scattering of the ambient UV and soft X-ray photons by the relativistic electrons in the jet. Basing on the comparison between the properties of the synchrotron radiation of the γ-ray source and the spectral evolution of the mm-radio outbursts, the evolutional relationship between the γ-ray emitting blobs and the mm-radio emitting blobs is discussed.  相似文献   

6.
Diffuse γ-rays probe the highest-energy processes at the largest scales. Here we derive model-independent constraints on the hadronic contribution to the Galactic and extragalactic γ-ray spectra at in the energy range 50 MeVEγ10 GeV. The hadronic component is dominated by emission from neutral pions, with a characteristic spectrum symmetric about mπ0/2. We exploit the well-defined properties of the pion decay spectrum to quantify the maximum pionic fraction of the observed γ-ray intensity. We find that the Galactic spectrum above 30 MeV can be atmost about 50% pionic. The maximum pionic contribution to the extragalactic spectrum is energy dependent; it also depends on the redshift range over which the sources are distributed, ranging from as low as about 20% for pions generated very recently, to as much as 90% if the pions are generated around redshift 10. The implications of these constraints for models of γ-ray and neutrino emission are briefly discussed.  相似文献   

7.
The COMPTEL observation of the γ-ray burst GRB 910601 has been reanalyzed using a direct demodulation method. The imaging result indicates that the location of GRB 910601 is closer to the annulus obtained by the Ulysses-BATSE system than that with the maximum-likelihood method. This confirms the feasibility of processing γ-ray bursts, a kind of transient source with good signal-to-noise ratio but poor statistics, with a direct demodulation method. The precision of locating γ-ray bursts by imaging can also be improved using this method.  相似文献   

8.
Data obtained by the on-board X-ray telescope of the Swift satellite show that a shallow decay component is present in the light curve of the early X-ray afterglows of some γ-ray bursts (GRBs), but not in others. The physical mechanism of this component is debatable. We have made a comparative study on the observational characteristics of the two kinds of GRBs for a sample of 29 GRBs. Our results demonstrate that the two kinds of GRBs have no significant difference in the burst duration, γ-ray flux, spectral index, hardness ratio and peak energy. However, a significant difference exists in the early X-ray afterglows of the bursts: the bursts with a shallow decay component tend to have a softer and fainter X-ray afterglow than those without a shallow decay component. The efficiency of the γ-ray radiation is also very different for the two kinds of bursts: it is obviously higher for the bursts with a shallow decay component than those without. These results seem to suggest that the progenitors and central engines of the two kinds of GRBs are similar, and that the appearance of the shallow decay component is probably due to the surrounding medium.  相似文献   

9.
Fu-Wen Zhang  Yi-Ping Qin   《New Astronomy》2008,13(7):485-490
GRB 060124 is the first event that both prompt and afterglow emission were observed simultaneously by the three Swift instruments. Its main peak also triggered Konus-Wind and HETE-II. Therefore, investigation on both the temporal and spectral properties of the prompt emission can be extended to X-ray bands. We perform a detailed analysis on the two well identified pulses of this burst, and find that the pulses are narrower at higher energies, and both X-rays and γ-rays follow the same wE relation for an individual pulse. However, there is no a universal power-law index of the wE relation among pulses. We find also that the rise-to-decay ratio r/d seems not to evolve with E and the r/d values are well consistent with that observed in typical GRBs. The broadband spectral energy distribution also suggests that the X-rays are consistent with the spectral behavior of the γ-rays. These results indicate that the X-ray emission tracks the γ-ray emission and the emissions in the two energy bands are likely to be originated from the same physical mechanism.  相似文献   

10.
In this exploratory simulation study, we compare the event-progenitor classification potential of a variety of measurable parameters of atmospheric Cherenkov pulses which are produced by ultrahigh energy γ-ray and hadron progenitors and are likely to be recorded by the TACTIC (TeV atmospheric Cherenkov telescope with imaging camera) array of atmospheric Cherenkov telescopes. The parameters derived from Cherenkov images include Hillas, fractal and wavelet moments, while those obtained from non-image Cherenkov data consist of pulse profile rise time and base width and the relative ultraviolet to visible light content of the Cherenkov event. It is shown by a neural-net approach that these parameters, when used in suitable combinations, can bring about a proper segregation of the two event types, even with modest sized data samples of progenitor particles.  相似文献   

11.
Ground-based arrays of imaging atmospheric Cherenkov telescopes have emerged as the most sensitive γ-ray detectors in the energy range of about 100 GeV and above. The strengths of these arrays are a very large effective collection area on the order of 105 m2, combined with excellent single photon angular and energy resolutions. The sensitivity of such detectors is limited by statistical fluctuations in the number of Cosmic-ray initiated air showers that resemble γ-ray air showers in many ways. In this paper, we study the performance of simple event reconstruction methods when applied to simulated data of the Very Energetic Radiation Imaging Telescope Array System (VERITAS) experiment. We review methods for reconstructing the arrival direction and the energy of the primary photons, and examine means to improve on their performance. For a software threshold energy of 300 GeV (100 GeV), the methods achieve point source angular and energy resolutions of σ63% = 0.1° (0.2°) and σ68% = 15% (22%), respectively. The main emphasis of the paper is the discussion of γ–hadron separation methods for the VERITAS experiment. We find that the information from several methods can be combined based on a likelihood ratio approach and the resulting algorithm achieves a γ–hadron suppression with a quality factor that is substantially higher than that achieved with the standard methods used so far.  相似文献   

12.
Loeb and Waxman have argued that high energy neutrinos from the decay of pions produced in interactions of cosmic rays with interstellar gas in starburst galaxies would be produced with a large enough flux to be observable. Their model is reexamined here and we obtain an upper limit to the diffuse neutrino flux from starburst galaxies. The upper limit obtained here is a factor of 5 lower than the flux which they predict. Our predicted neutrino flux would be below the atmospheric neutrino foreground flux at energies below 300 TeV and therefore would be unobservable. Compared with predicted fluxes from other extragalactic high energy neutrino sources, starburst neutrinos with PeV energies would have a flux considerably below that predicted for AGN models.

We also estimate an upper limit for the diffuse GeV γ-ray flux from starbust galaxies to be of the observed γ-ray background, much less than the component from unresolved blazars and more than an order of magnitude below the estimate of Thompson et al.  相似文献   


13.
The Solar Maximum Mission satellite did not record any γ-ray counts in excess of the background for a time interval of 223 s after the arrival of the first e's from the supernova 1987A. On the basis of the original data we derive a new 3σ upper limit on the γ fluence for this period and derive improved bounds on the νi → νjγ and νT → νeee+γ radiative decay channels for neutrino masses up to the experimentally allowed value of around 30 MeV.  相似文献   

14.
We discuss the concept and the performance of a powerful future ground-based astronomical instrument, 5@5 – a 5 GeV energy threshold stereoscopic array of several large imaging atmospheric Cherenkov telescopes (IACTs) installed at a very high mountain elevation of about 5 km a.s.l. – for the study of the γ-ray sky at energies from approximately 5 to 100 GeV, where the capabilities of both the current space-based and ground-based γ-ray projects are quite limited. With its potential to detect the “standard” EGRET γ-ray sources with spectra extending beyond several GeV in exposure times from 1 to 103 s, such a detector may serve as an ideal “gamma-ray timing explorer” for the study of transient non-thermal phenomena like γ-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of gamma ray bursts, etc. 5@5 also would allow detailed γ-ray spectroscopy of persistent nonthermal sources like pulsars, supernova remnants, plerions, radiogalaxies, and others, with unprecedented for γ-ray astronomy photon statistics. The existing technological achievements in the design and construction of multi(1000)-pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of such a detector in the foreseeable future, although in the longer terms from the point of view of ongoing projects of 100 GeV threshold IACT arrays like HESS which is in the build-up phase. An ideal site for such an instrument could be a high-altitude, 5 km a.s.l. or more, flat area with a linear scale of about 100 m in a very arid mountain region in the Atacama desert of Northern Chile.  相似文献   

15.
Observational results from the supersoft X-ray detector (SD) aboard the spacecraft Shenzhou-2 are briefly described. The resultspertain to cosmic γ-ray bursts solar x-ray bursts, high-energy charged particles and soft X-ray background radiation. The detector is a proportional counter with a polypropylene thin-film window of 50 mm diameter, it operates in the energy range 0.23–3.0keV covered by six energy channels. Two grades of time resolution are used: 40 ms for recording burst events and 520 ms when there is no triggering signal resulted from a burst event. Figures 1 and 2 show the light curves and energy spectra of two cosmic γ-ray bursts (starting time 2001 Jan 17, 09:37:25.21 UT and 2001 Mar 9, 12:33:55.692 UT), and Figures 3 and 4, the results on two solar X-ray burst (2001 Apr 6, 19:14:09.11 UT, and 2001 May 20, 06:02:12.58 UT). The detector records the ambient high-energy charged particles when there is no burst event and the shutter of the window is closed. 110 data sets of high-energy charged particles along the spacecraft orbit have been collected. As examples, the variations of the particle counting rate along the orbit are shown in Figs. 6a, 6b, 8e, 8f and 7. More than 10 events of particle precipitation induced by solar proton events have also been recorded, some of which are displayed in Figs.6c–6f and 7. Some of the data of soft X-ray background radiation shown in Fig. 8 were obtained when the shutter was open, and they are important for the data processing of the burst events.  相似文献   

16.
We calculate the expected flux of γ-ray and radio emission from the LMC due to neutralino annihilation. Using rotation curve data to probe the density profile and assuming a minimum disk, we describe the dark matter halo of the LMC using models predicted by N-body simulations. We consider a range of density profiles including the NFW profile, a modified NFW profile proposed by Hayashi et al. (2003) to account for the effects of tidal stripping, and an isothermal sphere with a core. We find that the γ-ray flux expected from these models may be detectable by GLAST for a significant part of the neutralino parameter space. The prospects for existing and upcoming Atmospheric Cherenkov Telescopes (ACTs) are less optimistic, as unrealistically long exposures are required for detection. However, the effects of adiabatic compression due to the baryonic component may improve the chances for detection by ACTs. The maximum flux we predict is well below EGRET's measurements and thus EGRET does not constrain the parameter space. The expected synchrotron emission generally lies below the observed radio emission from the LMC in the frequency range of 19.7–8550 MHz. As long as σv<2×10−26 cm3 s−1 for a neutralino mass of 50 GeV, the observed radio emission is not primarily due to neutralinos and is consistent with the assumption that the main source is cosmic rays. We find that the predicted fluxes, obtained by integrating over the entire LMC, are not very strongly dependent on the inner slope of the halo profile, varying by less than an order of magnitude for the range of profiles we considered.  相似文献   

17.
Very high energy γ-rays have recently been detected from the microquasar LS I +61 303 using the MAGIC telescope. A phenomenological study on the concomitant neutrinos that would be radiated if the γ-ray emission is hadronic in origin is herein presented. Neutrino oscillations are considered, and the expected number of events in a km-scale detector such as ICECUBE is computed under different assumptions including orbital periodicity and modulation, as well as different precision in the modeling of the detector. We argue that the upper limits already imposed on the neutrino emission of LS I +61 303 using AMANDA-II and the forthcoming measurements by ICECUBE may significantly constrain – in an independent and unbiased way – the γ-ray to neutrino flux ratio, and thus the possibility of a hadronic origin of the γ-rays. The viability of hadronic models based on wind–jet interactions in the LS +61 303 system after MAGIC measurements is discussed.  相似文献   

18.
The recent advances in TeV γ-ray astronomy using imaging Cerenkov telescopes is mainly due to the good separation between the properties of γ-ray and hadronic showers. A new method for this discrimination is described. The method is mainly based on the change of the image's Size and Surface Brightness (Size/Area) with energy and the differences in these parameters between those initiated by γ-rays and hadrons. The application of the method to the Whipple's 10 m telescope database from the Crab Nebula and Markarian 421 demonstrates its sensitivity to gamma-hadron separation. This study shows the importance of the image Surface Brightness, in addition to the previously used Shape and Orientation parameters.  相似文献   

19.
We point out that in the polar cap model, the visible part is only part of the cap and this fact should be taken into account when calculating the pulsar luminosity. When this is done, the calculated luminosities are in basic agreement with the observed values. Based on our calculations we give a list of 12 possible γ-ray candidates.  相似文献   

20.
We discuss the capability of ‘100 GeV’ class imaging atmospheric Cherenkov telescope (IACT) arrays as future powerful instruments of ground-based gamma-ray astronomy. It is assumed that the array is gathered from individually triggered quadrangular 4-IACT ‘cells’ with a linear size of about 100 m. The multi-cell concept allows coverage of large detection areas economically, and at the same time the effective exploitation of the stereoscopic approach of determination of the shower parameters using information obtained by several IACTs simultaneously. Determination of arrival directions of γ-ray primaries on an event-by-event basis with accuracy δθ ≤ 0.1° combined with high suppression efficiency (at both the hardware and software levels) of the background hadronic showers by a factor of ≈ 103, and large, up to 1 km2 collection areas, can provide minimum detectable energy fluxes of ≥ 100 GeV γ-rays from point sources down to 10−13 erg/cm2 s which is about 3 orders of magnitude lower than the current sensitivities achieved by the satellite-borne detectors at MeV and GeV energies. High sensitivities of multi-IACT arrays would partially compensate the limited efficiency of the technique for all-sky surveys, as well as allow study of moderately extended (≤ 1°) γ-ray sources. IACT arrays with minimum detectable fluence of ≥ 100 GeV γ-rays Sγ < 10−8 erg/cm2 are well suited for effective exploration of highly sporadic nonthermal phenomena from different classes of astrophysical objects on time-scales from ≤ 1 s to several minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号