首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
在内蒙古自治区锡林郭勒盟与赤峰交界处、达里湖的西北部有一群第四纪火山,数目达上百座,多数为中心式或裂隙-中心式喷发,形成相对高度在50~130m之间的火山锥,它们被称为"达里诺尔火山群",也是世界上海拔较高的火山群之一。因锥体形成后受风化、流水侵蚀等外力作用,多数火山锥已受剥蚀,但相对较新的火山还保留着完整的火山机构,包括火山渣锥、火山口、降落和溅落堆积物、塌陷坑、熔岩流、喷气锥等。达里诺尔火山锥体多由火山碎屑物组成,熔岩则流动迭加在早期形成的多级熔岩台地之上,分布总面积约3100km2,与其它火山岩共同组成了广阔的内蒙古高原。火山区整体呈四周低、中间阶梯状隆起的台地地形,按高程可分为四个阶梯,高度分别为1280m、1360m、1440m和1500m。熔岩台地的展布和火山锥的分布均呈东西走向的条带状,火山群的整体分布主要受东西向天山-阴山基底断裂和北东向大兴安岭-太行山断裂的双重影响,与大地构造关系密切。本群火山锥体虽然大小不一、形态各异,但按锥体形态可将火山锥分为截顶单锥形、复合型、盾形和残余型等四类,其剥蚀程度有明显差异,暗示了火山喷发活动时代的先后关系。锥形及复合型火山位于火山群中部,而盾形火山多沿台地边部分布,残余形火山则分布广泛,表明台地边部火山形成时间较早,晚期火山活动集中于台地中部,而更早期造台地的溢流式拉斑玄武岩喷发规模更大,形成本区基底。达里诺尔火山岩的岩性主要为碧玄岩和碱性玄武岩,少量为粗面玄武岩,虽然SiO_2变化范围较大,但全碱含量变化幅度相对较小,均属钾质系列的碱性火山岩范畴。火山岩斑晶数量少,在镜下为斑状结构,基质多为隐晶质,少量微晶质,明显不同于火山岩之下早期熔岩台地火山岩的基质显晶质结构。火山岩的微量元素呈LREE富集、HREE亏损的右倾型,显示了岩浆低度部分熔融的特征,并且本区与邻区火山岩可能有共同或相似的岩浆源。在岩性相近的基础上,结合火山锥体剥蚀和保留程度显示的火山活动相对时序,暗示本区岩浆成分从碱性玄武质和粗面玄武质逐渐演化为碧玄质,岩浆可能来自软流圈,且来源逐渐变深。  相似文献   

2.
We estimated the stress fields of the aftershocks of the 2000 western Tottori earthquake (Mw 6.6) and the northern Hyogo swarm (max Mw 5.2) by a stress tensor inversion of moment tensor solutions reported from the National Research Institute for Earth Science and Disaster Prevention (Japan). The maximum principal stress direction of the western Tottori sequence was estimated as N107°E with a strike–slip regime. In the northern Hyogo swarm, the orientations of the principal stress directions could not be well constrained by the observed data, but after examining the detailed characteristics of the solution, we obtained a most probable solution of N113°E for the σ1 direction. These solutions are consistent with the maximum horizontal directions roughly estimated from the strike directions of large earthquakes occurring geographically between these two seismic activities. We measured the angle between each fault–slip direction and maximum principal stress direction to investigate the frictional properties of earthquakes. The distribution of the angles was forward modeled to estimate the coefficient of friction and the stress ratio, assuming uniformly distributed fault orientations. For the western Tottori sequence, a homogeneous stress field with a coefficient of friction less than 0.4 was estimated. A high stress level was also suggested because very little change occurred in the stress field during the mainshock. For the northern Hyogo sequence, the coefficient of friction was estimated to be between 0.5 and 1.0.  相似文献   

3.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   

4.
Comparison of aerial photos, maps and triangulation data reveal that in the last 40 yr a part of the Thessaloniki coastal plain, a delta formed in the last 2500 yr, subsided at a rate of up to 10 cm/yr. As a consequence the sea invaded up to 2 km inland; precious land in the suburbs of the city was lost, while a village and major industrial plants are in risk of flooding. Part of the land was reclaimed thanks to barriers, pumping and artificial raising of the land surface. Yet, the situation is unstable and flooding is not unusual. Ground water withdrawal for the needs of the Thessaloniki metropolitan complex has initially been regarded as the cause of the subsidence. However, the lack of correlation in space and in time between fluctuations of piezometric levels, topographic changes and pumping indicates that the observed subsidence should be regarded as the cumulative effect of several factors, including consolidation of near-surface sediments due to the decline of the piezometric level and the partial abandonment of the delta, oxidation of peat soils in the vadose zone, synsedimentary deformation (faulting and flow) and loading-induced consolidation of deeper sediments.  相似文献   

5.
The Eastern Junggar terrane of the Central Asian Orogenic Belt includes a Late Paleozoic assemblage of volcanic rocks of mixed oceanic and arc affinity, located in a structurally complex belt between the Siberian plate, the Kazakhstan block, and the Tianshan Range. The early history of these rocks is not well constrained, but the Junggar terrane was part of a Cordilleran-style accreted arc assemblage by the Late Carboniferous. Late Paleozoic volcanic rocks of the northern part of the east Junggar terrane are divided, from base to top, into the Early Devonian Tuoranggekuduke Formation (Fm.), Middle Devonian Beitashan Fm., Middle Devonian Yundukala Fm., Late Devonian Jiangzierkuduke Fm., Early Carboniferous Nanmingshui Fm. and Late Carboniferous Batamayineishan Fm. We present major element, trace element and Sr–Nd isotopic analyses of 64 (ultra)mafic to intermediate volcanic rock samples of these formations. All Devonian volcanic rocks exhibit remarkably negative Nb, Ta and Ti anomalies on the primitive mantle-normalized trace element diagrams, and are enriched in more highly incompatible elements relative to moderately incompatible ones. Furthermore, they have subchondritic Nb/Ta ratios, and their Zr/Nb and Sm/Nd ratios resemble those of MORBs, characteristics of arc-related volcanic rocks. The Early Devonian Tuoranggekuduke Fm., Middle Devonian Beitashan Fm., and Middle Devonian Yundukala Fm. are characterized by tholeiitic and calc-alkaline affinities. In contrast, the Late Devonian Jiangzierkuduke Fm. contains a large amount of tuff and sandstone, and its volcanic rocks have dominantly calc-alkaline affinities. We therefore propose that the Jiangzierkuduke Fm. formed in a mature island arc setting, and other Devonian Fms. formed in an immature island arc setting. The basalts from the Nanmingshui Fm. have geochemical signatures between N-MORB and island arcs, indicating that they formed in a back-arc setting. In contrast, the volcanic rocks from the Batamayineishan Fm. display geochemical characteristics of continental intraplate volcanic rocks formed in an extensional setting after collision. Thus, we propose a model that involves a volcanic arc formed by northward subduction of the ancient Junggar ocean and amalgamation of different terranes during the Late Paleozoic to interpret the formation of the Late Paleozoic volcanic rocks in the Eastern Junggar terrane, and the Altai and Junggar terranes fully amalgamated into a Cordilleran-type orogen during the end of Early Carboniferous to the Middle–Late Carboniferous.  相似文献   

6.
The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic–Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China.Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite–granodiorite-dominated, tonalite–granodiorite–granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated.Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at 1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.  相似文献   

7.
Discussion points raised by Rose ( 2016 ) concentrate on late Albian stratigraphic relationships between formations of the East Texas Basin and the San Marcos Arch of the Comanche Platform in the northern Gulf of Mexico. Criticisms of Phelps et al. (2014) regarding stratigraphic nomenclature, palaeogeography and regional lithostratigraphic correlations generally focus on interpretive aspects of the study or do not account for the full scope of published information. Revisions to the top Aptian–Albian Supersequence boundary by Rose are incompatible with the relative location of a subaerial unconformity, as well as deepening lithofacies trends and retrogradational stratigraphic patterns below the interpreted boundary. Rose's placement of the top Aptian–Albian Supersequence boundary precisely at the Albian–Cenomanian stage boundary also implies ca 1·4 Ma of diachroneity in second order sea‐level patterns between the northern Gulf of Mexico and other documented global sedimentary basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号