首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In 1937 Dirac proposed the large number hypothesis (LNH). The idea was to explain that these numbers were large because the Universe is old. A time variation of certain “constants” was assumed. So far, no experimental evidence has significantly supported this time variation. Here we present a simplified cosmological model. We propose a new cosmological system of units, including a cosmological Planck’s constant that “absorbs” the well known large number 10120. With this new Planck’s constant no large numbers appear at the cosmological level. They appear at lower levels, e.g. at the quantum world. We note here that Zel’dovich formula, for the cosmological constant Λ, is equivalent to the Weinberg’s relation. The immediate conclusion is that the speed of light c must be proportional to the Hubble parameter H, and therefore decrease with time. We find that the gravitational radius of the Universe and its size are one and the same constant (Mach’s principle). The usual cosmological Ω’s parameters for mass, lambda and curvature turn out to be all constants of order one. The anthropic principle is not necessary in this theory. It is shown that a factor of 1061 converts in this theory a Planck fluctuation (a quantum black hole) into a cosmological quantum black hole: the Universe today. General relativity and quantum mechanics give the same local solution of an expanding Universe with the law a(t)≈const?t. This constant is just the speed of light today. Then the Hubble parameter is exactly H=a(t)′/a(t)=1/t.  相似文献   

3.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Robertson-Walker universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The cosmological term tends asymptotically to a genuine cosmological constant and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

4.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   

5.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

6.
Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter H in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.  相似文献   

7.
Einstein's equations with variable gravitational and cosmological constants are considered in the presence of a perfect fluid for the anizotropic Bianchi I universe in a way which conserving the energy-momentum tensor. Two solutions are found, one of which the cosmological term varies inversely with power law of time. The other of which cosmological term is constant.  相似文献   

8.
In this paper we have considered axially symmetric Bianchi-I, Kantowski Sachs and Bianchi-III space-time models with bulk viscosity, where the gravitational constant G and the cosmological term Λ vary with time. In Einstein equations this variation in G and Λ are taken in such a way as to preserve the energy momentum tensor. Solutions are obtained with the cosmological term varying inversely with square of time.  相似文献   

9.
In the light of the experiments /3,4/ showing that neutrinos may have a non-zero rest-mass, we discuss the constraints placed on the cosmological term Λ and the Hubble constant Ho by such a mass and the age of the universe in the Lemaitre model. An upper limit of Λ of 15 × 10?57/cm2 and possible ranges of Ho are given.  相似文献   

10.
We study the generalized second law (GSL) of thermodynamics in f(T) cosmology, where T is the torsion scalar in teleparallelism. We consider the universe as a closed bounded system filled with n component fluids in the thermal equilibrium with the cosmological boundary. We use two different cosmic horizons: the future event horizon and the apparent horizon. We show the conditions under which the GSL will be valid in specific scenarios of the quintessence and the phantom energy dominated eras. Further we associate two different entropies with the cosmological horizons: with a logarithmic correction term and a power-law correction term. We also find the conditions for the GSL to be satisfied or violated by imposing constraints on model parameters.  相似文献   

11.
This study set out to examine the effect of anisotropy on the various dark energy models by using the observational data, including the Sandage-Loeb test, Strongly gravitationally lensing, observational Hubble data, and Baryon Acoustic Oscillations data. In particular, we consider three cases of dark energy models: the cosmological constant model, which is most favored by current observations, the wCDM model where dark energy is introduced with constant w equation of state parameter and in Chevalier-Polarski-Linder parametrization where ω is allowed to evolve with redshift. With an anisotropy framework, a maximum likelihood method to constrain the cosmological parameters was implemented. With an anisotropic universe, we also study the behavior of different cosmological parameters such as Hubble parameter, EoS parameter, and deceleration parameter of dark energy models mentioned. The results indicate that the Bianchi type I model for the dark energy models are consistent with the combined observational data.  相似文献   

12.
The constraints on total neutrino mass and effective number of neutrino species based on CMB anisotropy power spectrum, Hubble constant, baryon acoustic oscillations and galaxy cluster mass function data are presented. It is shown that discrepancies between various cosmological data in Hubble constant and density fluctuation amplitude, measured in standard ΛCDM cosmological model, can be eliminated if more than standard effective number of neutrino species and non-zero total neutrino mass are considered. This extension of ΛCDM model appears to be ≈3σ significant when all cosmological data are used. The model with approximately one additional neutrino type, N eff ≈ 4, and with non-zero total neutrino mass, Σ ≈ 0.5 eV, provide the best fit to the data. In the model with only one massive neutrino the upper limits on neutrino mass are slightly relaxed. It is shown that these deviations from ΛCDM model appearmainly due to the usage of recent data on the observations of baryon acoustic oscillations. The larger than standard number of neutrino species is measured mainly due to the comparison of the BAO data with direct measurements of Hubble constant, which was already noticed earlier. As it is shown below, the data on galaxy cluster mass function in this case give the measurement of non-zero neutrino mass.  相似文献   

13.
We investigate the influence of the cosmological constant, Λ, on the bending of light by a charged black hole in a de Sitter spacetime. Despite vanishing of the cosmological constant in the second order null geodesic equation, considering the method introduced by Rindler and Ishak (2007), we obtain an expression for the deflection angle, consistent with previous results for Schwarzschild, Schwarzschild-de Sitter (SdS), and Reissner-Nordstrom (RN) spacetimes.  相似文献   

14.
A possible connection between MOND (Modification of Newtonian Dynamics) proposed as an alternative hypothesis to dark matter in galaxies and clusters and a residual cosmological constant term dominating cosmological dynamics in a = 1 universe is explored.  相似文献   

15.
Wesson obtained a limit on quantum and gravitational mass in the universe by combining the cosmological constant Λ, Planck’s constant ?, the speed of light c, and also the gravitational constant G. The corresponding masses are 2.0×10?62 kg and 2.3×1054 kg respectively, and in general can be obtained with the help of a generic dimensional analysis, or from an analysis where the cosmological constant appears in a four dimensional space-time and as a result of a higher dimensional reduction. In this paper our goal is to establish a relation for both quantum and gravitational mass as function of the information number bit N. For this reason, we first derive an expression for the cosmological constant as a function of information bit, since both masses depend on it, and then various resulting relations are explored, in relation to information number of bits N. Fractional information bits imply no information extraction is possible. We see, that the order of magnitude of the various parameters as well as their ratios involve the large number 10122, that is produced naturally from the fundamental parameters of modern cosmology. Finally, we propose that in a complete quantum gravity theory the idea of information the might have to be included, with the quantum bits of information (q-bits) as one of its fundamental parameters, resulting thus to a more complete understanding of the universe, its laws, and its evolution.  相似文献   

16.
The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term Λ in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter q. Consequences of the four cases of phenomenological decay of Λ have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.  相似文献   

17.
Using the effective gravitational field equations in the warped DGP brane-world scenario (Maeda et al. in Phys. Rev. D 68:024033, 2003), we study spherically symmetric vacuum (static black hole) solutions on the brane. Working with a conformally flat bulk, we have obtained an exact Schwarzschild–de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant, which confirms the idea that an extra term in the effective vacuum field equations on the warped DGP brane can play the role of a positive cosmological constant.  相似文献   

18.
On getting motivation from increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, Einstein’s field equations with variable cosmological “constant” are considered in presence of perfect fluid for a homogeneous and anisotropic Bianchi type-I space-time. Einstein’s field equations are solved by considering a time dependent deceleration parameter which affords a late time acceleration in the universe. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by consequences from recent supernovae Ia observations. From recently developed Statefinder pair, the behavior of different stages of the evolution of the universe has been studied. The physical significance of the cosmological models have also been discussed.  相似文献   

19.
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m(R is a scale factor and m is a constant).A variety of solutions is presented.The physical significance of the cosmological models has also been discussed.  相似文献   

20.
A class of non-vacuum expanding cosmological solutions of Wesson's 5D theory of gravity with variable rest mass is derived. The models are spatially homogeneous and isotropic and the source of gravitation is a pressureless fluid (dust) plus a cosmological constant term. The general and unified solution is found for the equations and some properties of different limiting cases are studied. Particularly, it is shown that for null cosmological constant the predicted age of the universe is smaller than the ones of the 4D FRW models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号