首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present LAMOST data on 168 γ Doradus(γ Dor) pulsating stars including stellar atmospheric parameters of 137 variables and spectral types for all of the samples. The distributions of period(P), temperature(T), gravitational acceleration(log(g)) and metallicity [Fe/H] are shown. It is found that most γ Dor variables are main-sequence stars with early F spectral types and temperatures from 6880 K to7280 K. They are slightly more metal poor than the Sun with a metallicity range from-0.4 to 0. On the H-R and log g-T diagrams, both the γ Dor and δ Scuti(δ Sct) stars occupy in the same region and some are beyond the borders predicted by current stellar pulsation theories. It is discovered that the physical properties of γ Dor stars are similar to those of long-period δ Sct(P 0.3 d) stars. The stellar atmospheric parameters are all correlated with the pulsation period for short-period δ Sct variables(P 0.3 d), but there are no such relations for γ Dor or long-period δ Sct stars. These results reveal that γ Dor and long-period δ Sct are the same group of pulsating stars and they are different from short-period δ Sct variables. Meanwhile, 33γ Dor stars are identified as candidates of binary or multiple systems.  相似文献   

3.
The present observational status of the Sct stars, Dor stars and roAp stars is discussed. The Sct stars are the most intensively observed of the three groups, but it has become clear that there are severe problems in extracting asteroseismic information from them. Dozens of frequencies are observed, but hundreds of frequencies are predicted from the models; unique matches of observation and theory still elude us. The Sct stars are observationally complex – some recent `best case' campaigns are discussed. It is possible that substantial observational advances for Sct stars may need to await upcoming satellite missions. New Dor stars are beingdiscovered frequently, and new behaviour is being found for them. They constitutean observationally young field. Their pulsational frequency range is being expanded, their position in the HR diagram is becoming better known (but is yet to be fully constrained), and the possibility exists of hybrid Dor – Sct stars that have greatasteroseismic promise, although it is clear such stars are rare, if they do exist. It has been observationally challenging to extract more than a fewfrequencies for any Dor star so far. Exciting spectroscopic discoveries of new behaviour in roAp stars promise unprecedented information about the structure of the peculiar atmospheres ofthose stars – pulsation amplitude and phase in 3D, magnetic field structurein 3D, abundance stratification in 3D, realistic T- for the most peculiarstars – as well as entirely new information about the interaction of pulsation,rotation and magnetic fields. Recent theoretical work has led to new understandingof the previously inexplicable frequency spacing of HR 1217 with new Whole Earth Telescope observations supporting this theory. An `improved oblique pulsator model' has been developed in which the pulsationaxis is not the magnetic axis; this model has passed several observationaltests and new ones are being devised to examine it further.  相似文献   

4.
This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space–time with a variable gravitational constant G and cosmological constant Λ. In the two-fluid model, one fluid represents the matter content of the universe and another fluid is chosen to model the CMB radiation. We find a variety of solutions in which the cosmological parameter varies inversely with time t. We also discuss in detail the behavior of associated fluid parameters and kinematical parameters. This paper pictures cosmic history when the radiation and matter content of the universe are in an interactive phase. Here, Ω is closing to 1 throughout the cosmic evolution.   相似文献   

5.
Photoionised plasmas are common in astrophysical environments and new high resolution spectra from such sources have been recorded in recent years by the Chandra and XMM-Newton satellites. These provide a wealth of spectroscopic information and have motivated recent efforts aimed at obtaining a detailed understanding of the atomic-kinetic and radiative characteristics of photoionised plasmas. The Z-pinch facility at the Sandia National Laboratories is the most powerful terrestrial source of X-rays and provides an opportunity to produce photoionised plasmas in a well characterised radiation environment. We present modelling work and experimental design considerations for a forthcoming experiment at Sandia in which X-rays from a collapsing Z-pinch will be used to photoionise low density neon contained in a gas cell. View factor calculations were used to evaluate the radiation environment at the gas cell; the hydrodynamic characteristics of the gas cell were examined using the Helios-CR code, in particular looking at the heating, temperature and ionisation of the neon and the absorption of radiation. Emission and absorption spectra were also computed, giving estimates of spectra likely to be observed experimentally.  相似文献   

6.
7.
The effect of a time-dependent cosmological constant is considered in a family of scalar-tensor theories. The Bianchi type I, III, V, VIo and Kantowski-Sachs models for vacuum and perfect fluid matter are found. The gravitational constant decreases with time so that these models satisfy the Dirac hypothesis. The “cosmological constant” also decreases with time, therefore it can have a very small value at the present time.  相似文献   

8.
We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range \({\gtrsim }0.13c\)–0.02c for the type V bursts, and nearly constant (\({\approx }0.4c\)) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel.  相似文献   

9.
Version 2.0 of CRPropa [CRPropa is published under the 3rd version of the GNU General Public License (GPLv3). It is available, together with a detailed documentation of the code, at https://crpropa.desy.de.] is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 7×1016<E/eV<A×1022 where A is the nuclear mass number. CRPropa can also be used to track secondary γ-rays and neutrinos which allows the study of their link with the charged primary nuclei – the so called multi-messenger connection. After a general introduction we present several sample applications of current interest concerning the physics of extragalactic ultra-high energy radiation.  相似文献   

10.
We present a brief review of polarimetric measurements of solar system objects, both linear and circular, obtained with the FORS1 instrument at the Very Large Telescope VLT over the past years. A number of first and new results have been obtained by using this unique observing mode at an 8 m class telescope, among them polarimetry of faint planetary bodies like near-Earth asteroids, Kuiper Belt objects and cometary nuclei, spectropolarimetry of cometary coma material and of the Earthshine of the Moon (in order to verify that life exists on Earth!). We outline the science cases for planetary polarimetry at a future Extremely Large Telescope ELT and provide high level requirements for polarimetric equipment to be used at the ELTs for the study of the science cases described.  相似文献   

11.
In this paper, we investigate analytically the level space of the imaginary part of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter by the Padmanabhan’s method (Padmanabhan in Class. Quantum Gravity 21:L1, 2004). Padmanabhan presented a method to study analytically the imaginary part of quasinormal frequencies for a class of spherically symmetric spacetimes including Schwarzschild-de Sitter black holes which has an evenly spaced structure. The results show that the level space of scalar and gravitational quasinormal frequencies for this kind of black holes only depend on the surface gravity of black-hole horizon in the range of $-1<w<-\frac{1}{3}$ , respectively. We also extend the range of w to w≤?1, the results of which are similar to that in $-1<w<-\frac{1}{3}$ case. Particularly, a black hole with a deficit solid angle in accelerating universe will be a Schwarzschild-de Sitter black hole, fixing w=?1 and ε 2=0. And a black hole with a deficit solid angle in the accelerating universe will be a Schwarzschild black hole,when ρ 0=0 and ε 2=0. In this paper, w is the parameter of state equation, ε 2 is a parameter relating to a deficit solid angle and ρ 0 is the density of static spherically symmetrical quintessence-like matter at r=1.  相似文献   

12.
We have analysed the available spectra of WW And and for the first time obtained a reasonably well defined radial velocity curve of the primary star. Combined with the available radial velocity curve of the secondary component, these data led to the first determination of the spectroscopic mass ratio of the system at qspec = 0.16 ± 0.03. We also determined the radius of the accretion disc from analysis of the double-peaked Hα emission lines. Our new, high-precision, Johnson VRI and the previously-available Strömgren vby light curves were modelled with stellar and accretion disc models. A consistent model for WW And – a semidetached system harbouring an accretion disc which is optically thick in its inner region, but optically thin in the outer parts – agrees well with both spectroscopic and photometric data.  相似文献   

13.
We present optical and infrared observations of BQ Cam, the optical counterpart to the Be/X-ray transient system V0332+53. BQ Cam is shown to be an O8–9Ve star, which places V0332+53 at a distance of ∼7 kpc. H α spectroscopy and infrared photometry are used to discuss the evolution of the circumstellar envelope. Owing to the low inclination of the system, parameters are strongly constrained. We find strong evidence for a tilt of the orbital plane with respect to the circumstellar disc (presumably on the equatorial plane). Even though the periastron distance is only ≈10 R *, during the present quiescent state the circumstellar disc does not extend to the distance of periastron passage. Under these conditions, X-ray emission is effectively prevented by centrifugal inhibition of accretion. The circumstellar disc is shown to be optically thick at optical and infrared wavelengths, which, together with its small size, is taken as an indication of tidal truncation.  相似文献   

14.
We calculated the temperature response of the 171 Å passbands of the Sun Watcher using APS detectors and image Processing (SWAP) instrument onboard the PRoject for OnBoard Autonomy 2 (PROBA2) satellite. These results were compared to the temperature responses of the Extreme Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), the Transition Region and Coronal Explorer (TRACE), the twin Extreme Ultraviolet Imagers (EUVI) onboard the Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft, and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Multiplying the wavelength-response functions for each instrument by a series of isothermal synthetic spectra and integrating over the range 165?–?195 Å produced temperature-response functions for the six instruments. Each temperature response was then multiplied by sample differential emission-measure functions for four different solar conditions. For any given plasma condition (e.g. quiet Sun, active region), it was found that the overall variation with temperature agreed remarkably well across the six instruments, although the wavelength responses for each instrument have some distinctly different features. Deviations were observed, however, when we compared the response of any one instrument to different solar conditions, particularly for the case of solar flares.  相似文献   

15.
The design, construction and performance of a 15-in. square mosaic interference filter is described. This is designed to improve the sensitivity of the SRC 48-in. Schmidt for the detection of gaseous nebulae in the light of H and [Nii] by approximately seven times. Its bandwidth with Kodak 098-04 emulsion is 105 Å but when combined with 103aE emulsion the effective bandwidth is around 80 Å.  相似文献   

16.
We developed a simple, handheld, and user-friendly magnetic susceptibility meter specialized for the identification of meteorites. The measurement is based on an LC resonance circuit. When provided with a rough estimate of the sample mass, the instrument displays directly the mass-normalized magnetic susceptibility expressed in logχm (with χm in 10−9 m3 kg−1), a parameter that is widely used in the classification of meteorites. Moreover, the measurement of the impedance of the LC resonator provides a proxy of the electrical conductivity (C-index) that can be helpful to distinguish metal-bearing samples from magnetite-bearing samples. This C-index offers an additional diagnostic for the identification of meteorites. Our tests demonstrate that the precision and the accuracy of this instrument called “Meteorite meter” (MetMet) are sufficient to allow distinguishing most meteorites from most terrestrial rocks, for a minimum recommended sample mass of 5 g. The distinction of some meteorite groups is also possible, in particular the separation of the three ordinary chondrite groups. Meteorite hunters, collectors, and curators and non-specialists, including children, can use this instrument as a guidance in the identification and classification of meteorites. This kind of instrument has an immense advantage over the widely used testing of meteorites with magnets, as it does not affect the paleomagnetic records of meteorites that are highly valuable for scientists.  相似文献   

17.
Analysis of the radial velocities based on spectra of high (near the H α line) and moderate (4420–4960 Å) resolutions supplemented by the published radial velocities has revealed the binarity of a bright member of the young open star cluster χ Per, the star V622 Per. The derived orbital elements of the binary show that the lines of both components are seen in its spectrum, the orbital period is 5.2 days, and the binary is in the phase of active mass exchange. The photometric variability of the star is caused by the ellipsoidal shape of its components. Analysis of the spectroscopic and photometric variabilities has allowed the absolute parameters of the binary’s orbit and its components to be found. V622 Per is shown to be a classical Algol with moderate mass exchange in the binary. Mass transfer occurs from the less massive (\({M_1} = 9.1 \pm 2.7{M_ \odot }\)) but brighter (\(\log {L_1} = 4.52 \pm 0.10{L_ \odot }\)) component onto the more massive (\({M_2} = 13.0 \pm 3.5{M_ \odot }\)) and less bright (\(\log {L_2} = 3.96 \pm 0.10{L_ \odot }\)) component. Analysis of the spectra has confirmed an appreciable overabundance of CNO-cycle products in the atmosphere of the primary component. Comparison of the positions of the binary’s components on the T eff–log g diagram with the age of the cluster χ Per points to a possible delay in the evolution of the primary component due to mass loss by no more than 1–2Myr.  相似文献   

18.
A dominant 16–17 yr cycle was observed in the net exposure times of the Earth to Toward and Away field directions of the interplanetary magnetic field (IMF). A cycle of the same frequency and phase was observed in the polarity of the long-term hemispheric differences in coronal hole distributions. This was determined from north/south differences in average Fexiv green line quiet regions at high- and mid-latitudes. It is argued that the 17-yr cycle is a fundamental oscillation of coronal hole topology, which is transferred to Earth via variations in the neutral sheet. A comparison of the 17-yr cycle to the 22-yr Hale cycle indicated that they are not identical, but rather, can mix to form a 75-yr cycle plus a 9-yr cycle. Evidence for the 75-yr cycle existed in the Earth's net exposure times to fields from the solar North and South, and in the long-term imbalance of solar quiet regions between the northern and southern hemispheres. The 9-yr cycle was manifested in the mid- to low- latitude Fexiv modulations and in solar wind velocity variations in the ecliptic. At Earth, evidence for a similar 17-yr cycle was observed in the horizontal magnetic field observations in a multitude of surface magnetic recording stations. In addition, the detection of a 17-yr cycle in the Huancayo neutron monitor cosmic ray series suggests that the effects of this cycle extend to the heliospheric boundaries. It is concluded that sufficient preliminary evidence exists to consider the hypothesis that the Sun contains a magnetic moment with an oscillatory cycle of 17 years.  相似文献   

19.
We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 February 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons for only a brief, early phase. Throughout the main period of energy release there is a super-hot (T?30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model, whereby Alfvén-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks: heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely expanding or conductively cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 February 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature (T?20 MK) post-flare loops. The number, size, and early appearance of these loops in TRACE’s 171 Å band are consistent with the type of transient reconnection assumed in the model.  相似文献   

20.
We considered one of the proton halo nuclei candidates, 13N* nucleus, and calculated the cross section and astrophysical S-factor for 12C(p, γ)13N* reaction using halo effective field theory without pion (hEFT¬π). The halo effective field theory is used to examine the halo nucleus bound state with a large S-wave scattering length. We calculated the radiative proton capture cross section and the astrophysical S-factor from the fields of the core and the valence proton at the Leading-Order (LO). We showed that there is a good agreement among the our results for cross section and astrophysical S-factor of the 12C(p, γ)13N* reaction and the experimental data. The astrophysical S-factor that has been estimated at the zero energy (Ecm=0) by using a theoretical calculation of the cross section for direct radiative capture and an extrapolation of this calculation obtained S(0)=1.883×103 MeV-b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号