首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents our light curve solutions of the Kepler data of two eccentric, eclipsing binaries: KIC 4281895 and KIC 5115178. The derived orbital and stellar parameters reveal that their components are of G spectral type and undergo partial eclipses. We found tidally-induced light humps around the periastron phases of the two targets which are appearances of the recently discovered “heartbeat” phenomenon.  相似文献   

2.
We present a new multicolor CCD photometry and light curve analysis of two eclipsing binary systems, 1SWASP J133417.80 + 394314.4 and V2790 Orion. The photometric solutions for both binaries were carried out using the updated version of the Wilson– Devinney code. The results showed that first systems is A- type W UMa with mass ratios q = 0.158 while the second system is W- type with q = 3.2. The systems show over contact configuration with fill-out factors of f = 43% and 14% respectively. We calculated the orbital and absolute physical parameters for both systems and investigated their evolutionary state.  相似文献   

3.
This study presents an investigation of the orbital period variations of five Algol type binaries, UX Leo, RW Mon, EQ Ori, XZ UMa and AX Vul based on all available minima times. The OC diagrams of all systems exhibit a periodic variation superimposed on a downward parabolic segment. The mass loss due to magnetic braking effect in the cooler components is assumed to account for the parabolic variation with a downward shape, while it is suggested that the light-time effect (LITE) due to an unseen component around the eclipsing binaries explains the tilted sinusoidal changes in their OC diagrams. The orbital period decrease rates for the systems are estimated as approximately between about 0.7 and 2.5 s per century. It is clearly seen that mass loss effect is more dominant than the expected mass transfer for classical Algols in this study. The minimum mass of the probable third bodies around the eclipsing pairs was calculated to be ?0.5 M except for UX Leo, in which it was estimated to be approximately 0.9 M. In order to search for third lights in the light curves of five systems, the V-light curves of the systems were analyzed and their physical and photometric parameters were determined. For UX Leo, a significant third light contribution was determined. We found a very small third light that can be tested using multi-color light curves, for RW Mon, EQ Ori and XZ UMa, while a third light for AX Vul could not be exposed.  相似文献   

4.
Photometric BVRc observations of the stars CSS J223614+311343, V523 Aur and V783 And were carried out and their absolute parameters (masses, radii and luminosities) were determined based on light curve modeling and Gaia distances. The main results are: (i) The components of CSS J223614+311343 and V783 And are of K spectral type while those of V523 Aur are G stars; (ii) The three systems have middle fillout factors 0.20–0.29; (iii) CSS J223614+311343 and V783 And are of A-subtype while V523 Aur is of W-subtype; (iv) The common target masses are near the lower mass limit for the known W UMa binaries; (v) The smaller in size (and less massive) components of all targets locate above the MS band of the evolutional diagrams while the bigger components are within the MS band. The only exception is the bigger component of V523 Aur that is also above the MS band. This result was attributed to the W-subtype of the target.  相似文献   

5.
We present the physical parameters of three short period close binaries using data observed from the Kepler Space Telescope. All of these observations were taken in a single bandpass(which approximates the Johnson V-band). Our three systems are KIC 2715417, KIC 6050116 and KIC 6287172. The first system, KIC 2715417, is considered a semi-detached system with the secondary component filling its Roche lobe. The second system, KIC 6050116, is an overcontact system, while the third system, KIC 6287172, belongs to ellipsoidal variables as deduced from the Roche lobe geometry. For photometric analysis, we used the PHOEBE software package, which is based on the Wilson-Devinney code. Due to lack of spectroscopic data, the photometric mass ratios are determined from the analyses of light curves using the q-search method. The absolute parameters are determined using three different methods(Harmanec, Maceroni Van'tVeer and Gazeas Niarchos).  相似文献   

6.
In this paper we study the field of Kepler open cluster NGC 6866 using the data obtained from Kepler mission collected for a period of 4 years. We search for the red clump (RC) stars amongst the red giant (RG) stars showing solar-like oscillations using median gravity-mode period spacings (ΔP). We find a RG star KIC 8263801 having median gravity-mode period spacing 173.7 ± 6.4 s. We claim based on the median gravity-mode period spacing that KIC 8263801 is a secondary red clump (SRC) star which is massive enough to have ignited Helium burning in a non degenerate core. In the literature, no classification for KIC 8263801 has been provided. This is the first time that a star located in the field of NGC 6866 is classified in this manner.  相似文献   

7.
KIC 10684673 (TYC 3562-805-1) was observed by the Kepler mission, which obtained nearly 50,000 data points in the short cadence mode from May through June of 2009 for a total of about 33 days. It has been added to the Kepler Eclipsing Binary Catalog as an eclipsing binary. However it is flagged as uncertain in nature. Upon visual inspection, it is found the light curve is not consistent with features present in light curves from typical eclipsing binary systems. Instead, it shows features more consistent with pulsation. In the present study, it is shown the light curve can be satisfactorily modeled by considering the target as single, multi-modal δ Scuti pulsator.  相似文献   

8.
Multicolour photometry of the polar AM Her was obtained during 3 observational seasons (1994/95/96). The star was in its high state for most of the observations. It was in its low state in '96 April. It was established that these two states differ not only in the average light level but in the larger amplitudes of variations at low state than at high state. Moreover the energy distributions of the two states differ in the stronger dependence of the flux on ν at high state than at low state. The Fourier analysis of the photometric data shows variability with the spectroscopic (orbital) period. The amplitudes of this variability in all colours are about two times bigger at low state than at high state. An attempt to explain the photometric behaviour of AM Her by a model of dominant emission of two hot spots at the magnetic poles of the white dwarf was made and the spot parameters were determined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We carried out light curve solutions of the Kepler light curves of twenty detached eclipsing binaries with circular orbits and determined the orbital inclinations, temperatures. relative radii and luminosities of their components. We studied the quality of the solutions with respect to the adopted limb‐darkening law and its coefficients. The detailed tracing of the numerous and uninterrupted data of our targets gave us an unique possibility to detect and learn their spot and flare activity. We established that the out‐of‐eclipse variability of the most targets gradually changes from small‐amplitude two‐waved type to big‐amplitude one‐waved type and vice versa, i.e. their spot activity cycles pass through phase of two almost diametrically opposite spots and phase of big polar cool spot. We found that the low‐temperature targets show flare activity of UV Cet‐type with amplitudes of 0.002–0.22 mag and duration of up to several hours. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We have characterized the annual behavior of martian atmospheric traveling waves in the MGS TES data set from the first two martian years of mapping. There is a high degree of repeatability between the two years. They are dominated by strong low zonal wavenumber waves with high amplitudes near the polar jets, strongest in late northern fall and early northern winter. The m=1 waves have amplitudes up to about 20 K, are vertically extended, and occasionally extend even into the tropics. Periods for m=1 range from 2.5 to 30 sols. Much weaker waves were identified in the south, with amplitudes less than about 3.5 K. Traveling waves with m=2 and m=3 are also seen, but their amplitudes are typically limited to less than 4 K, and are generally more confined near the surface. In the north, they are more evident in fall and spring rather than winter solstice, which is clearly dominated by m=1 waves. Some evidence of storm tracks has been identified in the data, with accentuated weather-related temperature perturbations near longitudes 200° to 320° E for both the southern and northern hemispheres near latitude ±65° at the surface. Some evidence was also found for a sharpening of longitudinal gradients into what may be frontal systems. EP flux divergences show the waves extracting energy from the zonal mean winds. When the m=1 waves were strongest, decelerations of the zonal jet of order 30 m/(s sol) were measured. Above 1 scale height, the waves extract energy from the jet predominately through barotropic processes, but their character is overall mixed barotropic/baroclinic. Inertial instabilities may exist at altitude on the equatorward flanks of the polar jets, and marginal stability extends through to the tropics. This may explain the coordination of the tropical behavior of the waves with that centered along the polar jet, consistent with the ideas expressed in Wilson et al. (2002, Geophys. Res. Lett. 29, #1684) and similar to those in Barnes et al. (1993, J. Geophys. Res. 98, 3125-3148). Throughout the year, there exist large regions with the meridional gradient of PV less than zero, but they are strongest near winter solstice. Poleward of the winter jet, the regions of instability reach the surface, equatorward they do not. These regions, satisfying a necessary criterion for instability, likely explain the genesis of the waves, and perhaps also their bimodal character between surface (faster waves) and altitude (slow m=1 waves).  相似文献   

11.
The BVR photometric light curves of the eclipsing binary BD And were obtained in 2008 and 2009. We estimated the mass ratio of the system as 0.97 and the photometric solutions were derived. The results show that BD And is a detached binary system, whose components have a little temperature difference of about 40 K. By analyzing photometric available light minimum times, we also derived an update ephemeris and found for the first time a possible periodic oscillation with an amplitude of 0.011 days and a period of 9.6 years. The results indicate that the periodic oscillation could be caused by a third component physically attached to the eclipsing binary. After removing the light variations due to the eclipses and proximity effects, the light-curve distortions are further explained by the pulsation of the primary component with a dominant period of ∼1 day. In accordance with the position of the primary component on the Hertzsprung–Russell diagram and its pulsation period, the primary component of BD And could be an excellent γ Doradus candidate. It is rarely phenomenon that a component of the eclipsing binary system is a γ Doradus variable.  相似文献   

12.
As a generalization of the Brans-Dicke type scalar-tensor gravity in a braneworld context, we study cosmological phase space of a braneworld model with induced gravity in the presence of a scalar field on the brane. We consider a quintom field minimally or non-minimally coupled to induced gravity on the warped DGP brane and we present a detailed analysis of the critical points, their stability and late-time cosmological viability of the solutions within a phase space approach. In particular, de Sitter solutions, different from the famous self-accelerated branch of the DGP model are found and the phase-space analysis for checking their attractor properties is performed. We analyze also the possibility of crossing of the phantom divide by the effective equation of state parameter of the model. We also focus on the classical stability of the solutions in ww′ phase plane.  相似文献   

13.
3C 66A was monitored by the BATC (Beijing-Arizona-Taipei-Connecticut) telescope from 2005 to 2008, 1994 observations were obtained on 89 nights. Detailed research and analysis was performed on these observations in this paper. A long term burst occurred in the whole light curve. No intra-day variability was claimed in our campaign by intra-night light curve analysis. Time lag of shorter wavelenth preceding longer wavelength was shown by correlation analysis. The results showed that the optical spectral shape turned flatter when the source brightened, and the spectral variability indicator was bigger on shorter time-scale as determined by the color indices variation analysis.  相似文献   

14.
BVRI photometry of SS Cyg from the end of 1996 and the beginning of 1997 is presented. The star underwent an eruption around December 11. The amplitude of which was slightly bigger than those of observed earlier eruptions. We saw some indication of the future outburst in the decreasing of brightness in all colours by about 0.4 mag during the last two weeks before the event. The emission of the system moved strongly to the shorter wavelengths at outburst. Our multicolour data confirm the existence of a light variability with the orbital (spectroscopic) period at quiescence. Moreover we found for the first time that this variability exists also at outburst but its amplitude is 3–5 times smaller. Whereas the amplitudes of the orbital variability at quiescence decrease to the longer wavelengths, they increase at outburst to the longer wavelengths. The orbital folded curve at quiescence has two-wave shape and was fitted well by the different visibility of two diametrical opposite hot spots (210000 K) with angular size 100 on the magnetic poles of the white dwarf. An analogy between the two basic states of the U Gem-star SS Cyg, the polar AM Her and Z Cam-star RX And was found.  相似文献   

15.
We present BVRI colors of 13 jovian and 8 saturnian irregular satellites obtained with the 2.56 m Nordic Optical Telescope on La Palma, the 6.5 m Magellan Baade Telescope on La Campanas, and the 6.5 m MMT on Mt. Hopkins. The observations were performed from December 2001 to March 2002. The colors of the irregular satellites vary from grey to light red. We have arbitrarily divided the known irregular satellites into two classes based on their colors. One, the grey color class, has similar colors to the C-type asteroids, and the other, the light red color class, has colors similar to P/D-type asteroids. We also find at least one object, the jovian irregular J XXIII Kalyke, that has colors similar to the red colored Centaurs/TNOs, although its classification is insecure. We find that there is a correlation between the physical properties and dynamical properties of the irregular satellites. Most of the dynamical clusters have homogeneous colors, which points to single homogeneous progenitors being cratered or fragmented as the source of each individual cluster. The heterogeneously colored clusters are most easily explained by assuming that there are several dynamical clusters in the area, rather than just one, or that the parent body was a differentiated, heterogeneous body. By analyzing simple cratering/fragmentation scenarios, we show that the heterogeneous colored S IX Phoebe cluster, is most likely two different clusters, a grey colored cluster centered on S IX Phoebe and a light red colored cluster centered on S/2000 S 1. To which of these two clusters the remaining saturnian irregulars with inclinations close to 174° belong is not clear from our analysis, but determination of their colors should help constrain this. We also show through analysis of possible fragmentation and dispersion of the six known uranian irregulars that they most likely make up two clusters, one centered on U XVI Caliban and another centered on U XVII Sycorax. We further show that, although the two objects have similar colors, a catastrophic fragmentation event creating one cluster containing both U XVI Caliban and U XVII Sycorax would have involved a progenitor with a diameter of ∼395 km. While such an event is not impossible it seems rather improbable, and we further show that such an event would leave 5-6 fragments with sizes comparable to or larger than U XVI Caliban. The stable region around Uranus has been extensively searched to limiting magnitudes far beyond that of U XVI Caliban. The fact that only U XVI Caliban, the larger U XVII Sycorax and four much smaller objects have been found leaves us with a distribution not compatible with a catastrophic event with such a large progenitor. The most likely solution is therefore two separate events creating two uranian dynamical clusters.  相似文献   

16.
Multicolor photometric observations of the W UMa binaries CSS J113505.5+332031, ASAS J142124+1813.1 and HR Boo are presented. They led to improvement of the orbital periods of CSS J113505.5+332031 and HR Boo. The light curve solutions revealed that all the targets are overcontact binaries with moderate fill-out factors whose components are of G and K spectral types. ASAS J142124+1813.1 and HR Boo undergo total eclipses and their mass ratios are well-determined. The small mass ratio of ASAS J142124+1813.1 puts this target in the list of W UMa binaries with extreme low mass ratios. The possible solutions for the partially-eclipsed binary CSS J113505.5+332031 and their precision are discussed in detail. Masses, radii and luminosities of the target components were estimated by our light curve solutions and GAIA distances.  相似文献   

17.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   

18.
19.
We present optical photometry of the Centaur 5145 Pholus during 2003 May and 2004 April using the facility CCD camera on the 1.8-m Vatican Advanced Technology Telescope on Mt. Graham, Arizona. We derive a double-peaked lightcurve and a rotation period of 9.980±0.002 h for Pholus, consistent with periods of 9.9825±0.004 and 9.9823±0.0012 h by Buie and Bus (1992, Icarus 100, 288-294) and Farnham (2001, Icarus 152, 238-245). We find a lightcurve peak-to-peak amplitude of 0.60 mag, significantly larger than peak-to-peak amplitude determinations of 0.15 and 0.39 mag by Buie and Bus and Farnham. We use the three observed amplitudes and an amplitude-aspect model to derive four possible rotational pole positions as well as axial ratios of a/b=1.9 and c/b=0.9. If we assume an albedo of 0.04, we find Pholus has dimensions of 310×160×150 km. If we assume Pholus is a strengthless rubble-pile and its non-spherical shape is due to rotational distortion, our axial ratios and period measurements indicate Pholus has a density of 0.5 g cm−3, suggestive of an ice-rich, porous interior. By combining B-band and R-band lightcurves, we find BR=1.94±0.01 and any BR color variation over the surface of Pholus must be smaller than 0.06 mag (i.e., much smaller than the 1.0<BR<2.0 range seen among the Centaur and Kuiper belt object populations). By combining our VR measurements with values in the literature, we find no evidence for any color variegation between the northern and southern hemispheres of Pholus. Observations of the Kuiper belt object 2004 DW (90482) over a time interval of seven hours show no color variation Our observations add to the growing body of evidence that individual Centaurs and KBOs exhibit homogeneous surface colors and hence gray impact craters on radiation reddened crusts are probably not responsible for the surprising range of colors seen among the Centaur and Kuiper belt object populations.  相似文献   

20.
We have presently derived the positive-energy solutions to the Dirac equation minimally coupled to a depth-dependent spatially harmonic tangential magnetostatic field to the magnetar crust, similar to the one proposed by Wareing and Hollerbach. It turns out that, for ultra-relativistic fermions and time-intervals much less the characteristic time (comparable to the average Ohmic timescale in the crust), the corresponding linearly independent modes get their depth-dependent amplitudes expressed in terms of Mathieu’s functions and therefore, non-trivial resonances arise, leading to instabilities in the system, for computable ranges of the model parameters. In order to detail these features, we have also discussed the current density components, pointing out the regions for which the particle density has a double bounded modulation. Finally as the magnetic field induction is increasing, the instability range gets larger triggering the exponential growth of the amplitudes, once the imaginary part of the Mathieu Characteristic Exponent becomes more and more dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号