共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of sulfur and lead isotopic compositions in hydrothermal deposits are an important tool to determine the source and processes of both sulfur and lead, and to understand the origin of hydrothermal ore deposits. Here, the sulfur and lead isotopic compositions of sulfide minerals have been studied for different hydrothermal fields in the East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), and North Fiji Basin (NFB). The sulfur isotopic compositions of the studied sulfide samples are variable (δ34S 0.0 to 9.6‰, avg. δ34S 4.7‰; n = 60), being close to the associated igneous rocks (~ 0‰ for, e.g., basalt, serpentinized peridotite), which may reflect the S in the sulfide samples is derived mainly from the associated igneous rocks, and a relatively small proportion (< 36%) of seawater sulfur incorporated into these sulfides during mixing between seawater (δ34S 21‰) and hydrothermal fluid. In contrast for a mixed origin for the source of S, the majority of the lead isotopic compositions (206Pb/204Pb 17.541 ± 0.004 to 19.268 ± 0.001, 207Pb/204Pb 15.451 ± 0.001 to 15.684 ± 0.001, 208Pb/204Pb 37.557 ± 0.008 to 38.988 ± 0.002, n = 21) of the sulfides possess a basaltic Pb isotopic composition, suggesting that the lead in the massive sulfide is mainly leached from local basaltic rocks that host the sub-seafloor hydrothermal systems in sediment-free mid-ocean ridges and mature back-arc basins. Furthermore, sulfide minerals in the super-fast and fast spreading mid-ocean ridges (MORs) exhibit less spread in their the δ34S values compared to sulfides from super-slow, and slow spreading MORs, which is most easily explained as a lesser degree of fluid-rock interaction and hydrothermal fluid-seawater mixing during hydrothermal ore-forming process. Additionally, the S and Pb isotope compositions of sulfides are controlled by the fluid processes for forming seafloor massive sulfide deposits. We demonstrate that the variable sulfur and lead isotopic compositions exhibit a relationship with the sulfur and lead sources, fluid–rock interaction, and fluid–seawater mixing. 相似文献
2.
Xichang Wu Xuan-Ce Wang Fengyou Chu Quanshu Yan Fengyue Sun 《International Geology Review》2020,62(7-8):938-954
ABSTRACT The northern Lau back-arc basin (NLB) lavas display a diverse geochemical nature caused by complex geological processes in this region. Independent component (IC) analysis was applied to investigate the nature of mantle sources in the NLB, based on a compiled geochemical data set from the NLB, central-southern Lau Basin (C-SLB), Pacific and Indian Ocean ridges, and Samoan islands. We identified three ICs in the five-dimensional space of Sr-Nd-Pb isotopic ratios, which can account for 96.5% of the isotopic variance. The correlations between the ICs and the incompatible trace elements ratios were further used to examine the origin of these ICs. The first IC (IC1) separates Samoan islands (IC1 < ?1) from the other groups, and shows negative correlation with (La/Sm)N ratios. The second IC (IC2) discriminates mid-ocean ridge basalts (MORBs) from Pacific (IC2 > 0) and Indian (IC2 < 0) Ocean ridges as well as the C-SLB (IC2 > 0) and NLB (IC2 < 0) lavas. IC2 correlates positively with Ba/Th ratios. The third IC (IC3) distinguishes MORBs (IC3 > 0) and back-arc basin lavas (IC3 < 0), and displays a negative correlation with Th/Nb values. On a regional scale in the NLB, there is a broad increase in IC1, IC2, and IC3 from the north to the south. Only IC3 presents obvious decrease from the west to the east, i.e. with decreasing distance from the arc. The geochemical nature and the statistical properties of these ICs suggest that IC1 is related to an enriched mantle component most likely from the nearby Samoan plume, and the IC2 corresponds to a fluid-rich component from the subducting Pacific slab. The IC3 may represent partial melt of recycled subducted sediment or recycled continental crustal materials. The geographic distribution of three ICs supports that the relatively recent mixing of Samoan plume materials with the subduction-metasomatized back-arc mantle may be responsible for the observed geochemical diversity in NLB lavas. 相似文献
3.
Yan Quanshu Zhang Pingyang Metcalfe Ian Liu Yanguang Wu Shiying Shi Xuefa 《Mineralogy and Petrology》2019,113(6):803-820
Mineralogy and Petrology - The Mariana Trough, a relatively simple intra-oceanic back-arc basin, is ideal for investigating magmatic processes and mantle-crust interaction in a subduction setting.... 相似文献
4.
《China Geology》2019,2(2):227-237
Research on the biomineralization in modern seafloor hydrothermal systems is conducive to unveiling the mysteries of the early Earth’s history, life evolution, subsurface biosphere and microbes in outer space. The hydrothermal biomineralization has become a focus of geo-biological research in the last decade, since the introduction of the microelectronic technology and molecular biology technology. Microorganisms play a critical role in the formations of oxide/hydroxides (e.g. Fe, Mn, S and Si oxide/hydroxides) and silicates on the seafloor hydrothermal systems globally. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms is regarded as a nexus between the geosphere and the biosphere, and as an essential complement of bioscience and geology. In this paper, we summarize the research progress of hydrothermal biomineralization, including the biogenic minerals, the microbial biodiversity, and also the interactions between minerals and microorganisms. In the foreseeable future, the research on hydrothermal biomineralization will inspire the development of geosciences and biosciences and thus enrich our knowledge of the Earth’s history, life evolution and even astrobiology.© 2019 China Geology Editorial Office. 相似文献
5.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the
recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev
vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide
(VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb
and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb).
A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized
patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values
of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly
shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely
reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks. 相似文献
6.
Reactions between reduced inorganic sulfur and organic compounds are thought to be important for the preservation of organic matter (OM) in sediments, but the sulfurization process is poorly understood. Sulfur isotopes are potentially useful tracers of sulfurization reactions, which often occur in the presence of a strong porewater isotopic gradient driven by microbial sulfate reduction. Prior studies of bulk sedimentary OM indicate that sulfurized products are 34S-enriched relative to coexisting sulfide, and experiments have produced 34S-enriched organosulfur compounds. However, analytical limitations have prevented the relationship from being tested at the molecular level in natural environments. Here we apply a new method, coupled gas chromatography – inductively coupled plasma mass spectrometry, to measure the compound-specific sulfur isotopic compositions of volatile organosulfur compounds over a 6 m core of anoxic Cariaco Basin sediments. In contrast to current conceptual models, nearly all extractable organosulfur compounds were substantially depleted in 34S relative to coexisting kerogen and porewater sulfide. We hypothesize that this 34S depletion is due to a normal kinetic isotope effect during the initial formation of a carbon–sulfur bond and that the source of sulfur in this relatively irreversible reaction is most likely the bisulfide anion in sedimentary porewater. The 34S-depleted products of irreversible bisulfide addition alone cannot explain the isotopic composition of total extractable or residual OM. Therefore, at least two different sulfurization pathways must operate in the Cariaco Basin, generating isotopically distinct products. Compound-specific sulfur isotope analysis thus provides new insights into the timescales and mechanisms of OM sulfurization. 相似文献
7.
Heileen Hsu-Kim Katherine M Mullaugh Jeffrey J Tsang Mustafa Yucel George W LutherIII 《Geochemical transactions》2008,9(1):6
Background
The speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC) in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis. 相似文献8.
Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation
The Tibetan plateau is characterized by intense hydrothermal activity and abnormal enrichment of trace elements in geothermal waters. Hydrochemistry and B isotope samples from geothermal waters in Tibet were systematically measured to describe the fractionation mechanisms and provide constraints on potential B reservoirs. B concentrations range from 0.35 to 171.90 mg/L, and isotopic values vary between −16.57 ‰ and +0.52 ‰. Geothermal fields along the Indus-Yarlung Zangbo suture zone and N–S rifts are observed with high B concentrations and temperatures. The similar hydrochemical compositions of high-B geothermal waters with magmatic fluid and consistent modeling of B isotopic compositions with present δ11B values imply that the B in high-B geothermal waters is mainly contributed by magmatic sources, probably through magma degassing. In contrast, geothermal fields in other regions of the Lhasa block have relatively low B concentrations and temperatures. After considering the small fractionation factor and representative indicators of Na/Ca, Cl/HCO3, Na + K and Si, the conformity between modeling results and the isotopic compositions of host rocks suggests that the B in low-temperature geothermal fields is mainly sourced from host rocks. According to simulated results, the B in some shallow geothermal waters not only originated from mixing of cold groundwater with deep thermal waters, but it was also contributed by equilibration with marine sedimentary rocks with an estimated proportion of 10%. It was anticipated that this study would provide useful insight into the sources and fractionation of B as well as further understanding of the relationships between B-rich salt lakes and geothermal activities in the Tibetan plateau. 相似文献
9.
The Southern Alps host volcano-sedimentary basins that formed during post-Variscan extension and strike-slip in the Early
Permian. We present U–Pb ages and initial Hf isotopic compositions of magmatic zircons from silicic tuffs and pyroclastic
flows within these basins, from caldera fillings and from shallow intrusions from a 250 km long E–W transect (Bozen–Lugano–Lago
Maggiore) and compare these with previously published data. Basin formation and magmatism are closely related to each other
and occurred during a short time span between 285 and 275 Ma. The silicic magmatism is coeval with mafic intrusions of the
Ivrea-Verbano Zone and within Austroalpine units. We conclude that deep magma generation, hybridisation and upper crustal
emplacement occurred contemporaneously along the entire transect of the Southern Alps. The heat advection in the lower crust
by injected mantle melts was sufficient to produce crustal partial melts in lower crustal levels. The resulting granitoid
melts intruded into the upper crust or rose to the surface forming large caldera complexes. The compilation of Sr and Nd isotopic
data of these rocks demonstrates that the mantle mixing endmember in the melts may not be geochemically enriched but has a
depleted composition, comparable to the Adriatic subcontinental mantle exhumed to form the Tethyan sea floor during Mesozoic
continental breakup and seafloor spreading. Magmatism and clastic sedimentation in the intracontinental basins was interrupted
at 275 Ma for some 10–15 million years, forming a Middle Permian unconformity. This unconformity may have originated during
large-scale strike-slip tectonics and erosion that was associated with crustal thinning, upwelling and partial melting of
mantle, and advection of melts and heat into the crust. The unconformity indeed corresponds in time to the transition from
a Pangea-B plate reconstruction for the Early Permian to the Late Permian Pangea-A plate assembly (Muttoni et al. in Earth
Planet Sci Lett 215:379–394, 2003). The magmatic activity would therefore indicate the onset of >2,000 km of strike-slip movement along a continental-scale
mega-shear, as their model suggests. 相似文献
10.
Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan 总被引:1,自引:0,他引:1
Sulfur isotopic composition has been measured on 30 granitoids and 11 gabbroids from the Cretaceous and Tertiary granitic terranes of Japan. The two series of granitoids, the magnetite-series and ilmenite-series, defined by Ishihara (1977), show two specific isotope trends. The magnetite-series granioids all have positive (su34)S (CDT) values from +1 to +9, while the ilmenite-series rocks are dominated by negative values between –11 and –1. The trend in the ilmenite-series is consistent with the thesis that the magma has been influenced by light biogenic sulfur from the continental crust. The inferred large scale magma-crust interaction in the ilmenite-series granitoids indicates that the emplacement of this series of magma has been governed by a stoping mechanism.In contrast, the magnetite-series granitoids have little if any evidence for significant magma-crust interaction, indicating that the intrusion of this series of magma may have been more or less of fissure-filling type. Their trend towards positive (su3 4)S values (average +5) argues for the introduction of some heavy sulfur, probably of seawater origin, into the mantle derived sulfur. This is most likely to occur in an arctrench system by the subduction of an oceanic plate which accompanies the sulfate-bearing pelagic sediments.The isotopic data of gabbroids, mostly between –1 and +3, are close to the commonly assumed value for mantle sulfur. Nevertheless, the gabbroids from the magnetite-series granitic terranes tend to have higher (su34)S value than those from the ilmenite-series belts. It is inferred that the factors controlling the isotope characteristics of the granitoid sulfur have also been operative in these grabbroids at least to some extent. 相似文献
11.
南秧田矿床是滇东南地区最大的以钨为主的金属矿床。文章以含电气石花岗片麻岩、无矿电气石石英脉和白钨矿矿化电气石石英脉样品为研究对象,结合地质特征、电气石元素地球化学及B同位素,对电气石成因开展研究。研究显示三类电气石均属于碱性电气石中的镁电气石,以富Mg及Y位中无Al或低Al为特征,具有相对高的FeO/(FeO+MgO)比值(平均0.53);其稀土元素(REE)配分曲线与晚白垩世花岗岩稀土元素配分曲线相似;δ~(11)B值集中在-14‰,与地壳平均值非常接近,这些特征表明其与岩浆期后热液成因的电气石特征一致。电气石石英脉中广泛的钨矿化表明晚白垩世岩浆期后热液对矿区主矿体的叠加富集作用明显,据此提出距晚白垩世花岗岩体数百米至一千米的中源距离为有利矿化区,为矿区外围及深部勘查评价指明了找矿方向。 相似文献
12.
P. Megalovasilis 《Geochemistry International》2014,52(11):992-1010
The geochemical study of 5 sediment cores obtained from different shallow hydrothermal fields along the volcanic arc (Methana, Milos, Kos and Yali), revealed that the degree of rock hydrothermal alteration from one area to another is different and is influenced by the physical and geochemical properties of the hydrothermal venting fluids and the type of the rocks in the substrate. The submarine hydrothermal fields in the central Aegean Sea are linked with the Hellenic Volcanic Arc and imprint their hydrothermal influence on the local marine sediments. Hydrothermal venting fluids differ in pH, temperature, gas and metallic element content, intensity of gas and water flux, while rock substrate is variable in terms of thickness and chemistry of the marine sediments and the mineral deposits. The analytical results showed that the lowest values of Fe are observed in Palaeochori Bay (0.72%) and the highest values are found in Bros Thermi (2.72%). The highest Mn concentrations are found in Bros Thermi (407 ppm) and the lowest are found in Yali (29 ppm). Cu and Pb highest concentrations are found in Bros Thermi (21 ppm) and Thiafi Bay (16 ppm), and the lowest in Yali (1 ppm). Zn highest values are found in Bros Thermi (56 ppm) and the lowest values in Kephalos Bay (10 ppm). Finally, the Ca and Mg-richest layers are observed in Kephalos 7.5 and 0.98% respectively and the lowest are observed in Milos (0.01% for Ca) and Yali (0.12% for Mg). The hydrothermal activity presented variations with geological time and hydrothermal suspended particulate matter coming out from the vent outlets also influence the sediment geochemistry. As an example in Methana, high concentrations of Cu and Zn in SPM result in high levels of Cu and Zn in the sediments. 相似文献
13.
Sulfur Isotope Fractionation in Magmatic Systems:Models of Rayleigh Distillation and Selective Flux 总被引:2,自引:0,他引:2
郑永飞 《中国地球化学学报》1990,9(1):27-45
The effect of Rayleigh distillation by outgassing of SO2 and H2S on the isotopic composition of sulfur remaining in silicate melts is quantitatively modelled.A threshold mole fraction of sulfur in sulfide component of the melts is reckoned to be of critical importance in shifting the δ^34S of the melts mith respect to the original magmas.The partial equilibrium fractionation in a magmatic system is evaluated by assuming that a non-equilibrium flux of sulfur occurs between magmatic volatiles and the melts,while an equilibrium fractionation is approached between sulfate and sulfide within the melts.The results show that under high fo2 conditions,the sulfate/sulfide ratio in a melt entds to increase,and the δ^34S value of sulfur in a solidified rock might then be shifted in the positive direction.This may either be due to Rayleigh outgassing in case the mole fraction of sulfide is less than the threshold,or due to a unidirectional increase in δ^34S value of the sulfate with decreaing temperature,Conversely,at low fo2,the sulfate/sulfide ratio tends to decrease and the δ^34S value of total sulfur could be driven in the negative direction,either because of the Rayleigh outgassing in case the mole fraction of sulfide is greater than the threshold,or because of a unidirectional decrease inδ^34S value of the sulfide.To establish isotopic equilibrium between sulfate and sulfide,the HM,QFM or WM buffers in the magmatic system are suggested to provide the redox couple that could simultaneously reduce the sulfate and oxidize the sulfide.CaO present in the silicatte Melts is also called upon to participate in the chemical equilibrium between sulfate and sulfide,Consequently,the δ^34S value of an igneous rock could considerably deviate from that of its original magma due to the influence of oxygen fugacity and temperature at the time of magma solidification. 相似文献
14.
Fibrous calcite from the Ordovician of Tennessee: preservation of marine oxygen isotopic composition and its implications 总被引:1,自引:0,他引:1
KENNETH J. TOBIN KENNETH R. WALKER D. MARK STEINHAUFF† CLAUDIA I. MORA 《Sedimentology》1996,43(2):235-251
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C. 相似文献
15.
Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA 总被引:6,自引:0,他引:6
We report here new sulfur isotope analyses from the Betze-Post-Screamer deposit, the largest Carlin-type gold deposit in the
world. Carlin-type deposits contain high concentrations of arsenic, antimony, mercury, tellurium and other elements of environmental
interest, and are surrounded by large volumes of crust in which these elements are also enriched. Uncertainty about the source
of sulfur and metals in and around Carlin-type deposits has hampered formulation of models for their origin, which are needed
for improved mineral exploration and environmental assessment. Previous studies have concluded that most Carlin-type deposits
formed from sulfide sulfur that is largely of sedimentary origin. Most of these studies are based on analyses of mineral separates
consisting of pre-ore diagenetic pyrite with thin overgrowths of ore-related arsenian pyrite rather than pure, ore-related
pyrite. Our SIMS spot analyses of ore-related pyrite overgrowths in the Screamer zone of the Betze-Post-Screamer deposit yield
δ34S values of about −1 to 4‰ with one value of about 7‰. Conventional analyses of realgar and orpiment separates from throughout
the deposit yield δ34S values of about 5–7‰ with one value of 10‰ in the Screamer zone. These results, along with results from an earlier SIMS
study in the Post zone of the deposit and phase equilibrium constraints, indicate that early arsenian pyrite were formed from
fluids of magmatic origin with variable contamination from sulfur in Paleozoic sedimentary rocks. Later arsenic sulfides were
formed from solutions to which sulfur of sedimentary origin had been added. The presence of Paleozoic sedimentary sulfur in
Carlin-type deposits does not require direct involvement of hydrothermal solutions of sedimentary origin. Instead, it could
have been added by magmatic assimilation of Paleozoic sedimentary rocks or by hydrothermal leaching of sulfur from wall rocks
to the deposit. Thus, the dominant process delivering sulfur, arsenic, gold and mineralizing fluids to Carlin-type systems
and their surrounding country rocks was probably separation of fluids from a magmatic source.
Editorial handling: G. Beaudoin 相似文献
16.
Zheng-Gang Li Yan-Hui Dong Ji-Qiang Liu Ling Chen 《International Geology Review》2015,57(5-8):978-997
Seamounts are an integral part of element recycling in global subduction zones. The published trace element and Pb-Sr-Nd isotope data for basaltic lavas from three key segments (Central Lau Spreading Ridge (CLSR), Eastern Lau Spreading Ridge (ELSR), and Valu Fa Ridge (VFR)) of the Lau back-arc basin were compiled to evaluate the contribution of Louisville seamount materials to their magma genesis. Two geochemical transitions, separating three provinces with distinct geochemical characteristics independent of ridge segmentation, were identified based on abrupt geochemical shifts. The origin of the geochemical transitions was determined to be the result of drastic compositional changes of subduction components added into the mantle source, rather than the transition from Indian to Pacific mid-ocean ridge basalt (MORB) mantle, or due to variable mantle fertilities. The most likely explanation for the drastic shifts in subduction input is the superimposition of Louisville materials on ‘normal’ subduction components consisting predominantly of aqueous fluids liberated from the down-going altered oceanic crust and minor pelagic sediment melts. Quantitative estimation reveals that Louisville materials contributed 0–74% and 21–83% of the Th budget, respectively, to CLSR and VFR lavas, but had no definite contribution to the lavas from the ELSR, which lies farthest away from the subducted Louisville seamount chain (LSC). The spatial association of the subducted LSC with the Louisville-affected segments suggests that the Louisville signature is regionally but not locally available in the Tonga subduction zone. Besides, the preferential melting of subducted old Cretaceous LSC crust instead of the old normal Pacific oceanic crust at similar depths implies that elevated temperature across the subduction interface or seamount erosion and rupture were required to trigger melting. A wider implication of this study, thus, is that seamount subduction may promote efficiency of element recycling in subduction zones. 相似文献
17.
岩浆到热液演化的包裹体记录——以骑田岭花岗岩体为例 总被引:1,自引:2,他引:1
骑田岭花岗岩是燕山期花岗岩早期多阶段侵入复式岩体,岩石化学的研究表明它是富碱的、高分异的A型花岗岩,形成于板内拉张的构造环境。在其第二阶段中细粒黑云母花岗岩内广泛发育着厘米级至米级似伟晶岩囊状体和石英晶洞, 它们是富挥发份岩浆固结的产物,代表岩石形成过程经历了明显的岩浆-热液过渡阶段。包裹体显微岩相学研究在骑田岭黑云母花岗岩的石英中发现熔体-流体包裹体和流体包裹体共存,这一结果进一步证实骑田岭中细粒黑云母花岗岩中的似伟晶岩囊状体和石英晶洞是花岗质熔体在岩浆-热液过渡阶段的产物。显微测温结果显示,熔体-流体包裹体的捕获温度大于530℃,说明岩浆热液过渡阶段的温度不低于该温度;闪锌矿中流体包裹体的均一温度在285~417℃之间,盐度为11.7% NaCleqv,代表了成矿流体的温度和盐度;流体包裹体的均一温度为172~454℃,代表热液阶段流体的温度。从中细粒黑云母花岗岩到似伟晶岩囊状体再到石英晶洞,岩浆-热液体系经历了富挥份熔体→熔体+高盐度流体→高盐度流体→低盐度流体的完整演化过程,形成了CaCl2-NaCl-H2O-CO2体系的岩浆热液流体。包裹体岩相学及激光拉曼探针分析结果显示,在流体包裹体和多晶熔体-流体包裹体中含有长石、方解石、金红石及金属氧化物等子矿物,暗示其所捕获的流体具有较强的成矿能力。 相似文献
18.
德新和轧轧龙铅锌矿是冈底斯西段银铅锌多金属成矿带典型的热液脉型铅锌矿床,关于其成矿物质来源及与纳如松多铅锌矿成因联系的研究鲜有开展。本研究利用单矿物和全岩稳定同位素方法对德新和轧轧龙铅锌矿的主要金属硫化物和含矿花岗斑岩进行了S、Pb同位素组成分析和示踪,结果显示德新铅锌矿硫化物δ34SVCDT为3.5‰~7.4‰,平均值为6.1‰;含矿花岗斑岩δ334SVCDT为4.4‰~6.2‰,平均值为5.7‰;轧轧龙铅锌矿金属硫化物δ334SVCDT为2.7‰~8.3‰,平均值为5.1‰;德新和轧轧龙铅锌矿铅同位素比值比较稳定,变化范围基本一致;铅同位素μ值为9.48~9.82,平均值为9.64;△β、△γ变化范围基本一致,均值相差较小,表明则学地区热液脉型铅锌矿金属硫化物和斑岩具有一致的S、Pb同位素组成,铅同位素具正常铅特征;暗示硫源可能主要由花岗岩类提供,铅源则可能主要来自上地壳物质。综合前人研究认为,德新、轧轧龙热液脉型铅锌矿和纳如松多铅锌矿具有一致的硫、铅同位素组成,三者应存在成因上的联系,可能属于同一成矿系统产物;花岗斑岩为则学地区热液脉状铅锌矿化提供了成矿物质。 相似文献
19.
《Geochimica et cosmochimica acta》1999,63(23-24):4053-4058
A detailed study was made of the oceanic 187Os/186Os variation through the Cenozoic by using a hydrogen peroxide leaching procedure on a pelagic clay core from the North Pacific (Long Lines-44 GPC3). A 6% H2O2 solution was used. The range of 187Os/186Os obtained by this procedure was between 2 and 8.2. A milder leach (0.15% H2O2) in three out of four samples yielded a slightly higher 187Os/186Os value than the stronger leach implying that the stronger leach released some meteoritic Os with 187Os/186Os of 1. Using published 3He concentrations in GPC3 and cosmic dust 3He and Os fluxes to deep-sea sediments, the extraterrestrial Os concentration was estimated for each core segment and subtracted to yield “corrected” values of 187Os/186Os. The results based on the milder leaching protocol and the 3He correction protocol yield similar values. The “corrected” ocean water 187Os/186Os pattern for the past 25 million years is similar to that obtained by other workers and is compatible with other results for the entire Cenozoic. The variation with time in GPC3, uniquely, provides a statigraphic signature for the Paleogene. 相似文献
20.
To investigate the potential of tourmaline as a geochemical monitor, a comprehensive dataset on major, minor and trace element concentrations as well as Fe3+/ΣFe ratios of tourmaline is presented. The dataset includes samples from five plutonic complexes related to diverse magmatic to hydrothermal stages of the Cornubian Batholith (SW England). Tourmaline composition found in barren and cassiterite-bearing samples include all three primary tourmaline groups and tourmaline species with the general endmembers schorl, dravite, elbaite, uvite, feruvite, foitite and Mg-foitite.Based on textures and compositions, it is possible to distinguish not only between late-magmatic and hydrothermal tourmaline, but also between several formation stages. Hence, tourmaline monitors late-magmatic processes and the partitioning of elements during exsolution of an aqueous phase. For example, in hydrothermal tourmaline Sn is strongly enriched, while Ti, Cr, V and Sc are depleted compared to late-magmatic tourmaline of the same sample. Several tourmaline generations that precipitated from magmatic fluids can be distinguished with differing major and minor elements and REE patterns depending on the composition of the melt from which they were expelled from. Strongly zoned tourmaline allows for unraveling the hydrothermal history of a distinct location including ore precipitation. The precipitation of SnO2 in the study area was probably caused by mixing between acidic, reduced, Sn-bearing magmatic fluids and oxidized meteoric fluids, which is in agreement with London and Manning (1995) and Williamson et al. (2000). Hence, the ability of tourmaline composition to monitor changes in Sn concentration and redox conditions in hydrothermal fluids has potential as an exploration tool. 相似文献