首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
在理解面向对象影像分析方法与像素聚合方法在多尺度景观连接特征分析不同基础上,建立基于面向对象影像分析的多边形阻抗表面的景观连接特征度量方法,并对两种多尺度景观连接特征提取方法进行比较。结果表明面向对象方法所获取的景观连接特征能更好保留线性廊道,提高景观连接特征精度。  相似文献   

2.
面向对象的多尺度多特征高分遥感影像建筑物提取   总被引:2,自引:3,他引:2  
建筑物作为地理信息基础数据,是衡量城市发展的主要指标,如何对遥感影像对建筑物进行的提取是遥感图像处理的热点。本文研究了基于面向对象的高分遥感影像建筑物提取,首先对影像进行多尺度分割,然后对分割以后形成的有意义的图斑进行处理。结合建筑物的光谱、形状等特征对建筑物进行提取,实验结果表明该方法提取结果较好,精度可以达到90.3%。  相似文献   

3.
随着遥感影像分辨率的不断提高,基于高分辨率遥感影像的目标自动提取逐步成为研究热点。本文采用面向对象的图像分析方法,基于Ecognition遥感图像处理平台,对IKONOS影像进行道路提取实验,重点对图像分割方案、道路提取规则、后处理方法等进行探讨。  相似文献   

4.
基于分水岭算法的高分遥感图像道路提取优化方法   总被引:2,自引:0,他引:2  
针对高分辨率遥感图像城市道路提取中存在的问题,在面向对象方法和数学形态学等理论基础上,提出了一种基于改进的分水岭分割算法的道路提取方法.在图像预处理基础上,首先使用改进的分水岭算法分割影像,提取基本的道路信息;然后利用面向对象方法提取道路基元,完善道路信息;最后将道路信息二值化,并采用数学形态学等方法进行优化,去除和修补不完善的道路.结果表明,该方法能有效地提取出城市地区的道路信息,对较复杂的道路环境也有较好的效果.  相似文献   

5.
以景观生态学理论为研究基础,以高分辨率遥感影像等为数据源、利用RS和GIS技术,将梅州城市规划区的土地利用类型分为耕地、林地、草地、城镇用地及公路用地、湖泊水面、河流水面、裸地、滩涂等9类,并从景观的基本构成、景观水平的破碎化与多样性、不同景观斑块的空间格局特征等进行了研究分析;并提出对研究区合理规划土地开发利用的建议...  相似文献   

6.
基于eCognition的遥感图像面向对象分类方法研究   总被引:1,自引:0,他引:1  
随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方法,也更加适用于高分辨率遥感影像。本文通过采用面向对象分类的基本方法,运用eCognition软件,以山东省胶州市地区遥感影像为例,进行多尺度分割和面向对象分类。并用ENVI做监督分类,基于目视解译精度评定,对不同方法作出分析评价。结果表明:面向对象分类方法精度更高,更具有可靠性。  相似文献   

7.
建筑物的倒损信息是震后灾害评估的一项重要指标。文中应用震后高分辨率遥感影像数据,采用面向对象分类方法,以最优分割参数对影像进行分割,构建多尺度影像对象层次结构。通过影像对象的光谱、形状、纹理等特征及空间拓扑关系建立分类规则库,提取基本完好、受损和完全倒塌三类破坏等级的建筑物震害信息。结果表明,面向对象分类方法能够实现提取三类等级的建筑物震害信息,从而满足地震灾害快速评估要求。  相似文献   

8.
面向对象的高分辨率遥感影像土地覆盖信息提取   总被引:3,自引:0,他引:3  
利用高分辨率影象提取土地覆盖信息的关键技术在于如何利用丰富的纹理信息来弥补光谱信息的不足。面向对象的图像分类技术改变了传统的面向像素的分类技术:(1)用来解译图像的信息并不在单个像元中,而是在图像对象和其相互关系中;采用多分辨率对象分割方法生成图像对象,提高了分类信息的信噪比;基于对象的分类技术不同于纯粹的光谱信息分类,图像对象还包含了许多的可用于分类的一些其他特征:形状、纹理、相互关系、上下关系等信息。面向对象的土地覆盖分类结果与传统分类方法相比,其特征提取算子更加地适合于几何信息和结构信息丰富的高分辨率图像的自动识别分类。  相似文献   

9.
面向对象的遥感影像信息提取研究   总被引:1,自引:0,他引:1  
结合地理国情监测,从理论和实践上分析了面向对象的遥感影像信息提取的意义,提出了面向对象的遥感影像多尺度信息提取的算法、流程及关键技术环节,在应用的基础上对解译结果进行了分析与评定,总结了经验及技巧,指出了目前应用中仍存在的难点和今后的研究重点。  相似文献   

10.
建筑物变化检测在城市环境监测、土地规划管理和违章违规建筑识别等应用中具有重要作用。针对传统孪生神经网络在影像变化检测中存在的检测边界与实际边界吻合度低的问题,本文结合面向对象图像分析技术,提出一种基于面向对象孪生神经网络(Obj-SiamNet)的高分辨率遥感影像变化检测方法,利用模糊集理论自动融合多尺度变化检测结果,并通过生成对抗网络实现训练样本迁移。该方法应用在高分二号和高分七号高分辨率卫星影像中,并与基于时空自注意力的变化检测模型(STANet)、视觉变化检测网络(ChangeNet)和孪生UNet神经网络模型(Siam-NestedUNet)进行比较。结果表明:(1)融合面向对象多尺度分割的检测结果较单一尺度分割的检测结果,召回率最高提升32%,F1指数最高提升25%,全局总体误差(GTC)最高降低7%;(2)在样本数量有限的情况下,通过生成对抗网络进行样本迁移,与未使用样本迁移前的检测结果相比,召回率最高提升16%,F1指数最高提升14%,GTC降低了9%;(3)Obj-SiamNet方法较其他变化检测方法,整体检测精度得到提升,F1指数最高提升23%,GTC最高降低9%。该方法有效提高了建筑物变化检测在几何和属性方面的精度,并能有效利用开放地理数据集,降低了模型训练样本制作成本,提升了检测效率和适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号