共查询到20条相似文献,搜索用时 62 毫秒
1.
在理解面向对象影像分析方法与像素聚合方法在多尺度景观连接特征分析不同基础上,建立基于面向对象影像分析的多边形阻抗表面的景观连接特征度量方法,并对两种多尺度景观连接特征提取方法进行比较。结果表明面向对象方法所获取的景观连接特征能更好保留线性廊道,提高景观连接特征精度。 相似文献
2.
3.
基于分水岭算法的高分遥感图像道路提取优化方法 总被引:2,自引:0,他引:2
针对高分辨率遥感图像城市道路提取中存在的问题,在面向对象方法和数学形态学等理论基础上,提出了一种基于改进的分水岭分割算法的道路提取方法.在图像预处理基础上,首先使用改进的分水岭算法分割影像,提取基本的道路信息;然后利用面向对象方法提取道路基元,完善道路信息;最后将道路信息二值化,并采用数学形态学等方法进行优化,去除和修补不完善的道路.结果表明,该方法能有效地提取出城市地区的道路信息,对较复杂的道路环境也有较好的效果. 相似文献
4.
随着遥感影像分辨率的不断提高,基于高分辨率遥感影像的目标自动提取逐步成为研究热点。本文采用面向对象的图像分析方法,基于Ecognition遥感图像处理平台,对IKONOS影像进行道路提取实验,重点对图像分割方案、道路提取规则、后处理方法等进行探讨。 相似文献
5.
以景观生态学理论为研究基础,以高分辨率遥感影像等为数据源、利用RS和GIS技术,将梅州城市规划区的土地利用类型分为耕地、林地、草地、城镇用地及公路用地、湖泊水面、河流水面、裸地、滩涂等9类,并从景观的基本构成、景观水平的破碎化与多样性、不同景观斑块的空间格局特征等进行了研究分析;并提出对研究区合理规划土地开发利用的建议... 相似文献
6.
基于eCognition的遥感图像面向对象分类方法研究 总被引:1,自引:0,他引:1
随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方法,也更加适用于高分辨率遥感影像。本文通过采用面向对象分类的基本方法,运用eCognition软件,以山东省胶州市地区遥感影像为例,进行多尺度分割和面向对象分类。并用ENVI做监督分类,基于目视解译精度评定,对不同方法作出分析评价。结果表明:面向对象分类方法精度更高,更具有可靠性。 相似文献
7.
8.
面向对象的高分辨率遥感影像土地覆盖信息提取 总被引:3,自引:0,他引:3
利用高分辨率影象提取土地覆盖信息的关键技术在于如何利用丰富的纹理信息来弥补光谱信息的不足。面向对象的图像分类技术改变了传统的面向像素的分类技术:(1)用来解译图像的信息并不在单个像元中,而是在图像对象和其相互关系中;采用多分辨率对象分割方法生成图像对象,提高了分类信息的信噪比;基于对象的分类技术不同于纯粹的光谱信息分类,图像对象还包含了许多的可用于分类的一些其他特征:形状、纹理、相互关系、上下关系等信息。面向对象的土地覆盖分类结果与传统分类方法相比,其特征提取算子更加地适合于几何信息和结构信息丰富的高分辨率图像的自动识别分类。 相似文献
9.
10.
建筑物变化检测在城市环境监测、土地规划管理和违章违规建筑识别等应用中具有重要作用。针对传统孪生神经网络在影像变化检测中存在的检测边界与实际边界吻合度低的问题,本文结合面向对象图像分析技术,提出一种基于面向对象孪生神经网络(Obj-SiamNet)的高分辨率遥感影像变化检测方法,利用模糊集理论自动融合多尺度变化检测结果,并通过生成对抗网络实现训练样本迁移。该方法应用在高分二号和高分七号高分辨率卫星影像中,并与基于时空自注意力的变化检测模型(STANet)、视觉变化检测网络(ChangeNet)和孪生UNet神经网络模型(Siam-NestedUNet)进行比较。结果表明:(1)融合面向对象多尺度分割的检测结果较单一尺度分割的检测结果,召回率最高提升32%,F1指数最高提升25%,全局总体误差(GTC)最高降低7%;(2)在样本数量有限的情况下,通过生成对抗网络进行样本迁移,与未使用样本迁移前的检测结果相比,召回率最高提升16%,F1指数最高提升14%,GTC降低了9%;(3) Obj-SiamNet方法较其他变化检测方法,整体检测精度得到提升,F1指数最高提升23%,GTC最高降低9%。... 相似文献
11.
高分辨率遥感影像建筑物信息自动提取是遥感应用研究中的一个热点问题,但由于受到成像条件不同、背景地物复杂、建筑物类型多样等多个因素的影响使得建筑物的自动提取仍然十分困难。为此,在综合考虑影像光谱、几何与上下文特征的基础上,提出了一种基于面向对象与形态学相结合的高分辨率遥感影像建筑物信息分级提取方法。该方法首先利用影像的多尺度及多方向Gabor小波变换结果提取建筑物特征点;然后采用面向对象的思想构建空间投票矩阵来度量每一个像素点属于建筑物区域的概率,从而提取出建筑物区域边界;最后在提取的建筑物区域内应用形态学建筑物指数实现建筑物信息的自动提取。实验结果表明,本文方法能够高效、高精度地完成复杂场景下的建筑物信息提取,且提取结果的正确性和完整性都优于效果较好的PanTex算法。 相似文献
12.
13.
针对高空间分辨率遥感影像中的地物具有多尺度特性,以及各个尺度的对象特征对地物分类精度的影响具有较强的尺度效性,并结合面向对象影像分析方法和多尺度联合稀疏表示方法在高空间分辨率遥感影像分类中的各自优点,提出了一种面向对象的多尺度加权稀疏表示的高空间分辨率遥感影像分类算法。首先,采用多尺度分割算法获得多尺度分割结果并提取对象的多尺度特征;然后,根据影像对象的多尺度分割质量测度计算各尺度的对象权重,构建面向对象的多尺度加权联合稀疏表示模型;最后,采用2个国产GF-2高空间分辨率遥感数据集和1个高光谱-高空间分辨率航空遥感数据集(WashingtonD.C.数据)验证该算法的有效性。试验结果表明,与SVM、像素级稀疏表示、单尺度和多尺度对象级稀疏表示和深度学习等算法相比较,本文算法获得了较高的OA和Kappa分类精度,提高了各个尺度地物的分类精度,有效抑止了地物分类结果中的椒盐噪声现象,同时保持大尺度地物的区域性和小尺度地物的细节信息。 相似文献
14.
基于遥感影像的城市道路提取对于城市建设、规划和地图更新等有重要意义。针对高分辨率遥感影像城市道路网的复杂性,结合尺度空间思想提出一种面向对象的城市道路自动提取算法。在此基础上,使用Canny算子获取像元簇梯度图,并进行标记分水岭分割得到区域对象;建立城市道路与几何、光谱特征相关的道路规则,从分割结果中筛选出道路区域对象;使用形态学方法提取道路区域的骨架,并对骨架进行连接、光滑等后处理,最后输出道路网提取结果。实验结果表明,该方法用于复杂城市道路的高精度自动提取,对城市道路网更新有一定参考意义。 相似文献
15.
16.
17.
18.
条件随机场模型由于其较强的上下文信息建模能力,被广泛应用于建筑物提取任务中。然而,面对高分辨率遥感影像丰富的地物信息,基于条件随机场的提取方法存在建筑物边界模糊的问题。本文提出了一种全局局部细节感知条件随机场框架,该框架提出全局局部一体化D-LinkNet,在有效利用多尺度建筑物信息的同时保留局部结构信息,解决了传统条件随机场一元势能丢失边界信息的问题。同时,该框架融合分割先验以缓解建筑物类内光谱差异较大的影响,利用更大尺度的上下文信息来精确提取建筑物,并引入局部类别标记代价从而保持细节信息以获取清晰的建筑物边界。实验结果表明,该框架在WHU卫星和航空数据集上的精度评价指标均优于其他对比方法,其IoU分别达89.82%和91.72%,对于复杂场景下的建筑物信息能够获得较好的提取效果。 相似文献
19.
20.
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area. 相似文献