首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
高光谱遥感图像的监督分类   总被引:1,自引:0,他引:1  
图像分类是高光谱遥感图像分析与应用的重要手段。总结了目前用于高光谱图像监督分类的主要方法,包括最小距离法、最大似然法、神经元网络法和支持向量机法,分析了上述方法的特点,并探讨了高光谱遥感图像分类方法的发展趋势。  相似文献   

3.
高光谱遥感图像的出现进一步提升遥感图像分类的准确性,但高光谱遥感图像的数据量大,处理高光谱遥感图像复杂度高、效率低。为解决这一问题,将主成分分析算法作为遥感图像分类的预处理技术。分析主成分分析算法的原理,利用主成分分析算法提取高光谱图像的主要波段图像。通过实验验证得出结论:高光谱遥感图像的主波段图像包含分类所需的大部分信息,利用少数的主波段图像即可达到70%以上的分类正确率。实验结果表明,在保证分类正确率的前提下,PCA算法可有效地减少图像分类处理的数据量,提高图像的处理效率。  相似文献   

4.
提出了一种光谱相似性测度用于高光谱图像分类方法。通过将光谱向量进行归一化处理,将计算得到的欧氏距离与光谱角余弦的值域归化到相同区间,得到光谱角余弦与欧氏距离联合测度值(SAC-NED)。在对图像像元进行分类时,以距离加权的方式将邻域像元参与中心像元SAC-NED值的计算,将像元分到SAC-NED值最大的类别。通过与其他5种常用相似性测度方法的实验结果对比表明:该算法能够提升高光谱图像分类的准确性和稳定性。  相似文献   

5.
基于穷举法的高光谱遥感图像地物识别研究   总被引:1,自引:0,他引:1  
介绍了一种基于穷举法的高光谱遥感图像地物识别方法。该方法从所有与研究区有关的可能参考光谱中识别出图像上每个像元的最佳匹配光谱,绘制识别结果图,并由图中信息可对参考光谱进行更换,以求得最佳识别结果。并以云南省中甸普朗斑岩铜矿区外围的高光谱遥感图像为例,得到了该区的地物识别图,经实地检验,证实了该方法的有效性。  相似文献   

6.
薛朝辉  李博 《遥感学报》2022,26(10):2014-2028
基于卷积神经网络的高光谱图像分类是当前的研究热点,先后发展了空洞卷积、可形变卷积等先进模型。然而,现有可形变卷积只在空间维偏移,忽略了高光谱图像光谱之间的差异信息。为此,本文将可形变卷积从空间维扩展到光谱维,设计了光谱可形变卷积,提出了光谱可形变卷积网络SDCNN (Spectral Deformable Convolutional Neural Network)。首先,利用全连接层学习光谱可形变卷积的偏移量,采用线性差值对图像光谱维进行特征校准;其次,采用多层1×1卷积进行光谱维特征聚合;最后,使用三维卷积层提取光谱—空间联合特征。不同于空间可形变卷积,光谱可形变卷积只在光谱维上进行偏移,可以为不同类别选择更合适的特征波段,提升模型的判别性。在国际通用测试数据Indian Pines、University of Pavia以及University of Houston上进行了实验,结果表明:本文提出的SDCNN方法优于其他深度学习方法,在相同样本条件下取得了更高的分类精度,总体精度达到了98.86%(Indian Pines,10%/类)、99.81%(University of P...  相似文献   

7.
韩玲  张若岚  谢秋昌 《测绘科学》2011,36(3):150-151
以往的高光谱或多光谱图像分类与识别,往往只关注像元光谱维上的特性,其一切特征统计也只在光谱及波段维上展开。但是自然界的复杂性、混合像元问题的存在,仅靠像元的光谱特性是不够的,常会出现"麻点"现象。针对这一问题,本文提出一种结合地物空间特性的高光谱图像分类方法,其分类过程可以分为两个阶段,第一阶段是基于像元光谱特性的图像分类,获得影像分类图;第二阶段是针对第一阶段的分类结果,结合地物空间特性进行空间后分类处理。试验研究结果表明,该方法能够保持地块的连续性和均一性,同时克服了"麻点"现象,大大提高分类的精度。  相似文献   

8.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。  相似文献   

9.
高光谱作为“图谱合一”的遥感技术,具有精细光谱和空间影像的地面覆盖观测与识别优势。然而,高光谱遥感数据的光谱信息表征以及空间信息的利用给双时相高光谱遥感图像变化检测任务带来了巨大的挑战。为此,本文探讨了一种光谱—频域属性模式融合的高光谱遥感图像变化检测方法 SFDAPF(Spectral-Frequency Domain Attribute Pattern Fusion)。首先,设计一种基于梯度相关性的光谱绝对距离,使双时相高光谱遥感图像像元对的属性模式从光谱信息表征方面得到了逐级量化;其次,基于傅里叶变换理论提出一种变化像元属性模式显著性增强策略,从全局空间信息利用方面改善了变化与非变化属性像元对的可分性;再次,将全图属性模式显著性水平与梯度相关性的光谱绝对距离进行融合,得到变化检测的综合界定值;最后,依据虚警阈值确定双时相高光谱遥感图像变化检测的二值化结果。将本文提出的SFDAPF方法在开源的双时相高光谱遥感图像河流和农场数据集上进行了变化检测性能验证,结果表明SFDAPF方法能够优于传统的和最新的变化检测方法,变化检测的总体精度在河流和农场数据集上分别达到了0.96508和0.9...  相似文献   

10.
最小光谱相关约束NMF的高光谱遥感图像混合像元分解   总被引:1,自引:0,他引:1  
提出了一种最小化光谱相关度约束的非负矩阵分解方法。该方法根据高光谱遥感图像中端元之间具有不相关性这一特点,提出了一种光谱相关度函数。该函数度量光谱之间的相关程度,函数值越小,光谱间的相关度越小。通过联合最小化光谱相关度函数和非负矩阵分解误差函数,使获得的光谱之间具有最小的相关性,从而获得端元光谱以及组分图。模拟实验和真实实验证明了算法的有效性。  相似文献   

11.
张艺超  郑向涛  卢孝强 《测绘学报》2023,52(7):1139-1147
高光谱图像分类将每个像素分类至预设的地物类别,对环境测绘等各类地球科学任务有着至关重要的意义。近年来,学者们尝试利用深度学习框架进行高光谱图像分类,取得了令人满意的效果。然而这些方法在光谱特征的提取上仍存在一定缺陷。本文提出一个基于自注意力机制的层级融合高光谱图像分类框架(hierarchical self-attention network, HSAN)。首先,构建跳层自注意力模块进行特征学习,利用Transformer结构中的自注意力机制捕获上下文信息,增强有效信息贡献。然后,设计层级融合方式,进一步缓解特征学习过程中的有效信息损失,增强各层级特征联动。在Pavia University及Houston2013数据集上的试验表明,本文提出的框架相较于其他高光谱图像分类框架具有更好的分类性能。  相似文献   

12.
基于光谱库的高光谱稀疏解混技术近年来得到了人们的关注,该技术利用光谱库中光谱样本作为端元,将解混问题转化为稀疏表示问题。然而,由于测量环境的差异,待解混图像的实际端元往往与光谱库中相应光谱信号存在差异。本文提出了一种光谱差异稀疏约束的联合稀疏回归解混算法。首先,假设光谱差异具有稀疏特性,建立了光谱库校正模型,使得在解混过程中可对光谱库进行自适应地调整;然后,将光谱库校正模型与联合稀疏回归解混模型结合,建立了考虑光谱差异的稀疏解混模型;最后,基于交替方向乘子法得到了迭代优化解决方案。分别利用仿真和真实高光谱数据进行了试验验证,结果表明,在光谱库不匹配的情形下,本文方法能够有效提高稀疏解混算法的解混性能。  相似文献   

13.
一种多/高光谱遥感图像端元提取的凸锥分析算法   总被引:8,自引:0,他引:8  
凸锥分析方法常用于多光谱和高光谱遥感图像的端元提取。遥感图像中的每个像元都可以看作一个多维向量,整幅影像看作由离散的非负向量构成的凸锥,通过寻找凸锥的角点来自动获取图像的端元。本文提出了一种自动选择最佳凸锥角点的方法,应用到传统的凸锥分析方法中,提高了凸锥分析方法的效率。利用模拟数据和真实数据实验验证了算法的可行性。  相似文献   

14.
为了精确识别高光谱遥感图像上的地物,使用交叉相关光谱匹配方法获取光谱整体形态的最大偏移量,通过对比分析吸收谷位置变化获取吸收谷位置的最大偏移量,在此基础上确定吸收谷位置的偏移范围;然后使用穷举法,进行基于整体形态和偏移范围内局部吸收谷位置的识别。在云南中甸普朗斑岩铜矿区的高光谱遥感图像的实际应用表明,该方法的识别结果比仅考虑整体形态的识别结果具有更高的可靠性,能进一步证实识别结果的准确性。  相似文献   

15.
高光谱图像分类是遥感领域中一个具有挑战性的问题。基于深度学习框架的高光谱图像分类方法,由于其良好的分类性能受到了越来越多的关注。然而,这些方法普遍存在的问题为:模型的训练不仅需要大量的时间,而且还需要大量的标签样本。针对此问题,本文提出了一种基于超像素图卷积网络的高光谱图像分类方法。该方法以超像素作为图的节点,极大地减小了图的规模,从而提高了分类效率;提出的超像素合并技术能有效地融合光谱-空间信息,增强了空间信息在分类中的作用;为了验证该方法的有效性,在Indian Pines、Pavia University两个实际数据集上进行试验,并与一些先进的基于深度学习框架的高光谱图像分类方法进行比较。结果表明,本文方法在分类精度和分类效率上均优于其他方法。  相似文献   

16.
波段选择是高光谱遥感图像分类的重要前提,本文提出了一种用于高光谱遥感图像波段选择的改进二进制布谷鸟算法,通过使用混合二进制编码算法更新子代鸟巢和使用遗传算法交叉方式更新被发现鸟巢两个方面对二进制布谷鸟算法进行改进,找出在图像中起主要作用且相关性低的波段,实现对高光谱遥感图像降维。将本文算法运用于PaviaU数据集和AVIRIS数据集,并与二进制布谷鸟算法、二进制粒子群算法、最小冗余最大相关算法、Relief算法等进行对比分析。结果表明,改进二进制布谷鸟算法波段特征选择效率更高,且选取的波段更具代表性,能够较好地提高后续分类精度。  相似文献   

17.
丰明博  刘学  赵冬 《测绘学报》2014,43(2):158-163
将高光谱图像与高空间分辨率图像融合后,由于融合图像空间分辨率提高,改变了混合像元内地物组分比例,像元光谱信息较原高光谱图像光谱信息会出现“失真”现象。针对这种情况,考虑混合像元内成分变化进行图像融合,首先利用投影方法模拟多光谱图像得到高光谱图像,并将模拟高光谱图像与原高光谱图像利用小波方法进行融合,融合图像不仅增强了空间信息,而且对光谱信息进行一定的修正,从而提高了环境异常探测等一系列应用的精度。利用Hyperion图像和SPOT-5图像进行融合实验,融合图像能够识别出87.2%目标区域。  相似文献   

18.
章硕  孙斌  李树涛  康旭东 《遥感学报》2021,25(5):1108-1123
高光谱图像能够获取地物精细的光谱诊断特征,但受限于多谱段分光的成像机制,图像各个谱段上光成像的能量不足,信噪比难以提升.高光谱图像噪声类型与强度的准确估计,是提升高光谱图像去噪性能的关键,也是优化其成像系统设计的重要依据.现有高光谱图像噪声估计算法通常将不同类型的图像噪声作为一个整体,并未充分考虑不同类型噪声的区别.本...  相似文献   

19.
20.
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号