首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
高精度Lu—Hf同位素测定的新技术与新方法   总被引:3,自引:0,他引:3  
综述了Lu-Hf同位素体系的基本地质地球化学特征,对比了Lu-Hf同位素现有的分析方法,并介绍了包括化学流程在内的应用多接收器双耦合等离子体质谱仪(MC-ICP-MS)进行高精度和高准确度,Lu-Hf同位素分析的原理和测试过程,列举了部分最新地质应用成果。  相似文献   

2.
To assess the homogeneity of and provide the first Sr‐Nd‐Hf‐Pb isotopic reference values for the Chinese Geological Standard Glasses CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5, we measured these isotopes in several measurement sessions over the course of nearly 3 years. The results were obtained by high‐precision MC‐ICP‐MS and TIMS. Our investigation indicates that these CGSG glass reference materials are homogenous with regard to Sr‐Nd‐Hf‐Pb isotopic distribution and are therefore suitable geochemical materials for Sr‐Nd‐Hf‐Pb isotope measurements. Clear differences in Sr‐Nd‐Hf‐Pb isotopic composition were observed between the glasses and the original powdered rock reference materials (CGSG‐2 and GSR‐7, and especially CGSG‐5 and GSR‐2) because of flux addition during preparation of the glasses. The new Sr‐Nd‐Hf‐Pb isotope data provided here might be useful to the geochemical community for in situ and bulk analysis.  相似文献   

3.
New isotopic studies of 142Nd, the daughter product of the short-lived and now extinct isotope 146Sm, have revealed that the accessible part of the silicate Earth (e.g., upper mantle and crust) is more radiogenic in 142Nd/144Nd than that of chondritic meteorites. The positive 142Nd anomaly of the Earth’s mantle implies that the Sm/Nd ratio of the mantle was fractionated early in Earth’s history and that the complementary low 142Nd reservoir has remained isolated from the mantle since its formation. This has led to the suggestion that an early enriched reservoir, formed within Earth’s first hundred million years (the Hadean), resides permanently in the deep interior of the Earth. One hypothesis for a permanently isolated reservoir is that there may be an Fe-rich, and hence intrinsically dense, chemical boundary layer at the core-mantle boundary. The protoliths of this chemical boundary layer could have originated at upper mantle pressures during extreme fractional crystallization of a global magma ocean during the Hadean but testing this hypothesis is difficult because samples of this early enriched reservoir do not exist. This hypothesis, however, is potentially refutable. Here, we investigate a post-Archean magnetite-sulfide magma formed by extreme magmatic differentiation to test whether residual Fe-rich liquids of any kind have the necessary trace-element signatures to satisfy certain global geochemical imbalances. The magnetite-sulfide magma is found to have high Pb contents (and low U/Pb ratios), high Re/Os ratios, and anti-correlated Sm/Nd and Lu/Hf fractionations. Permanent segregation of such a magma would (1) provide a means of early Pb sequestration, resulting in the high U/Pb ratio of the bulk silicate Earth, (2) be a source of radiogenic 187Os in the source regions of plumes, and (3) provide an explanation for decoupled Hf and Nd isotopic evolution in the early Archean, which is not easily produced by silicate fractionation. However, the magnetite-sulfide magma is not highly enriched in K, and thus, at face value, this magma analog would not serve as a repository for all of the heat producing elements. Nevertheless, other Fe-O-S liquids reported elsewhere are enriched in apatite, which carries high concentrations of K, U and Th. Given some promising geochemical fractionations of the Fe-rich liquids investigated here, the notion of a Hadean Fe-rich residual liquid deserves continued consideration from additional experimental or analog studies.  相似文献   

4.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   

5.
This paper presents results of U–Pb dating (SHRIMP-II) and Lu–Hf (LA–ICP MS) isotope study of zircon from Paleoarchean plagiogneisses and plagiogranitoids of the Onot and Bulun blocks of the Sharyzhalgai uplift. Magmatic zircons from the Onot plagiogneiss and Bulun gneissic trondhjemite are dated at 3388±11 and 3311±16 Ma, respectively. Magmatic zircons from plagiogneisses and plagiogranitoids of the studied tonalite–trondhjemite–granodiorite (TTG) complexes are characterized mainly by positive values of εHf indicating that felsic melts were generated mainly from juvenile (mafic) sources, which are derived from a depleted mantle reservoir. The variable Hf isotope composition in magmatic zircons and the lower average εHf values in comparison with the depleted mantle values suggest the contributions of both mafic and more ancient crustal sources to magma formation. Metamorphic zircons from the gneissic plagiogranite and migmatized plagiogneiss either inherited the Hf isotope composition from magmatic zircon or are enriched in radiogenic Hf. The more radiogenic Hf isotope composition of metamorphic zircons from the migmatized plagiogneisses is due to their interaction with melt during partial melting. Variations in the Lu–Hf isotope composition of zircon from the Bulun rocks in the period 3.33–3.20 Ga are due to the successive melting of mafic crust or the growing contribution of crustal material to their genesis. Correlation between the Lu–Hf isotope characteristics of zircon and the Sm–Nd parameters of the Onot plagiogneisses points to the contribution of ancient crustal material to their formation. The bimodal distribution of the model Hf ages of zircons reflects two stages of crustal growth in the Paleoarchean: 3.45–3.60 and ~ 3.35 Ga. The isotope characteristics of zircon and rocks of the TTG complexes, pointing to recycling of crustal material, argue for the formation of plagiogneisses and plagiogranitoids as a result of melting of heterogeneous (mafic and more ancient crustal) sources in the thickened crust.  相似文献   

6.
In this contribution, we report Hf isotopic data and Lu and Hf mass fractions for thirteen Chinese rock reference materials (GBW07 103–105, 109–113 and 121–125, that is GSR 1–3, 7–11 and 14–18, respectively) that span a broad compositional range. Powdered samples were spiked with a 176Lu‐180Hf enriched tracer and completely digested using conventional HF, HNO3 and HClO4 acid dissolution protocols. Fluoride salts were dissolved during a final H3BO3 digestion, and chemical purification was performed using a single Ln resin. All measurements were carried out on a MC‐ICP‐MS. This work provides the first comprehensive report of the Lu‐Hf isotopic composition of Chinese geochemical rock reference materials, and results indicate that they are of comparable quality to the well‐characterised and widely used USGS and GSJ rock reference materials.  相似文献   

7.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

8.
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD‐1G and MPI‐DING reference glasses. Thirteen different laboratories were involved using high‐precision bulk (TIMS, MC‐ICP‐MS) and microanalytical (LA‐MC‐ICP‐MS, LA‐ICP‐MS) techniques. Detailed studies were performed to demonstrate the large‐scale and small‐scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD‐1G and the MPI‐DING glasses are suitable reference materials for microanalytical and bulk analytical purposes.  相似文献   

9.
Super-chondritic 142Nd signatures are ubiquitous in terrestrial, Martian and lunar samples, and indicate that the terrestrial planets may have accreted from material with Sm/Nd ratio higher than chondritic. This contradicts the long-held view that chondrites represent a reference composition for the 147Sm-143Nd system. Using coupled 146Sm-142Nd and 147Sm-143Nd systematics in planetary samples, we have proposed a new set of values for the 147Sm/144Nd and 143Nd/144Nd ratios of the bulk silicate Earth (Caro et al., 2008). Here, we revise the Bulk Silicate Earth estimates for the 87Rb-87Sr and 176Lu-176Hf systems using coupled Sr-Nd-Hf systematics in terrestrial rocks. These estimates are consistent with Hf-Nd systematics in lunar samples. The implications of a slightly non-chondritic silicate Earth with respect to the geochemical evolution of the mantle-crust system are then examined. We show that the Archean mantle has evolved with a composition indistinguishable from that of the primitive mantle until about 2 Gyr. Positive ε143Nd and ε176Hf values ubiquitous in the Archean mantle are thus accounted for by the non-chondritic Sm/Nd and Lu/Hf composition of the primitive mantle rather than by massive early crustal formation, which solves the paradox that early Archean domains only have a limited extension in the present-day continents. The Sm-Nd and Lu-Hf evolution of the depleted mantle for the past 3.5 Gyr can be entirely explained by continuous extraction of the continents from a well-mixed mantle. Thus, in contrast to the chondritic Earth model, Sm-Nd mass balance relationships can be satisfied without the need to call upon hidden reservoirs or layered mantle convection. This new Sm-Nd mass balance yields a scenario of mantle evolution consistent with trace element and noble gas systematics. The high 3He/4He mantle component is associated with 143Nd/144Nd compositions indistinguishable from the bulk silicate Earth, suggesting that the less degassed mantle sources did not experience significant fractionation for moderately incompatible elements.  相似文献   

10.
The reasons for the isotopic heterogeneity of the mantle are analyzed in this paper on the basis of published isotopic data. It was shown that the observed variations in the Sr, Nd, Hf, and Pb isotopic compositions of oceanic basalts cannot be explained by mixing of a finite number of homogeneous reservoirs (components). The considerable variations in the contents of Rb, Sr, Sm, Nd, Lu, Hf, U, Th, and Pb and ratios of these and other trace elements in tholeiitic basalts indicate that the chemical heterogeneity of mantle-derived rocks is inherited in part from their sources. Oceanic tholeiitic basalts show a tight correlation between the variances of Nd, Hf, Sr, and Pb isotopic ratios and the variances of respective radiogenic additions that could be accumulated in these rocks over a time period of 〈t〉 = 1.8 Gyr. This paradox clearly indicates that variations in all the mentioned isotopic systems in the mantle cannot be understood without the analysis of the geochemical heterogeneity of rocks.The close to lognormal distributions of lithophile trace elements in oceanic tholeiitic basalts and the character of correlations between them suggest that magmatic differentiation was the major mechanism of the formation of chemical heterogeneity in the mantle. The role of metasomatism in the global transport of trace elements and formation of the geochemically heterogeneous mantle is probably rather limited. Intrusive processes within the mantle could result in the development of chemical and, after a period of time, isotopic anomalies in the mantle. Simple calculations show that long-lived geochemical anomalies related to alkaline magmatism could be responsible for EM-I type isotopic anomalies, and geochemical anomalies produced in the mantle by enriched tholeiitic melts could be sources of EM-II type isotopic anomalies. The analysis of the distribution of the isotopic compositions of mantle-derived igneous rocks in various “isochron” coordinates suggested that the formation of geochemical anomalies in the mantle is a long-term process lasting for hundreds of millions of years. Nonetheless, trends approaching 4.5 Ga were never observed in such diagrams, i.e., the mantle is in general rejuvenated in all isotopic systems. Both on global and local scales, there are no mantle domains that have remained geochemically closed and isolated since the Earth’s formation. The entire mantle is involved in material exchange processes.The development of isotopic systems in the mantle was explored by means of statistical modeling accounting for the tendency of a continuous increase in the chemical heterogeneity of the mantle source and the tendency of obliteration of the isotopic heterogeneity owing to the convective mixing in the mantle. The modeling demonstrated that the character of the isotopic heterogeneity of the mantle is statistically consistent with the character of its chemical heterogeneity. The mantle isotopic anomalies HIMU, EM-I, and EM-II were generated by two simultaneous processes: the magmatic differentiation of mantle material and its not very efficient mixing.  相似文献   

11.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

12.
The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268–0.892) together with their respective Sr–Nd–Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle “hybridization”, metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5–25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re–Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu–Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.  相似文献   

13.
铂族元素(Os,Ir,Pt,Ru,Rh,Pd)具有强亲铁性和强亲铜性,为一组地球化学性质相近的相容元素,铂族元素包含两个同位素衰变体系(^190Pt-^186Os和^187Re-^187Os)。近年来,铂族元素和Re-Os同位素在研究各类不同地持作用过程中,尤其是在地幔岩石的研究中,作用独特,效果显著。由于地幔岩石的铂族元素含量较低,因此高精度,高灵敏度的分析测试方法的研究就显得十分重要。以往的分析方法(如常规的ICP-MS和中子活化分析方法),对含10^-9-10^012级低含量铂族元素的产品分析精度一般较差(>15%-100%)。所采用的分析流程通常也无法同时获得样品的铂族元素含量和Os同位素比值。本文采用新的熔样方法(HAP-S高温高压釜酸溶法),新的化学流程(溶剂萃取和阴离子交换树脂柱)和新的分析仪器(多接收等离子体质谱MC-ICPMS和负离子热电离质谱N-TIMS)。用同位素稀释法对低含量地幔橄榄岩样品同时测定的铂族元素含量和Os同位素比值,获得了高精度的分析结果。对所分析的地橄榄样品中的铂族元素分配曲线和Os同位素组成的地质意义进行了初步探讨。  相似文献   

14.
How the earth's crust formed and evolved during the Precambrian times is one of the key questions to decipher the evolution of the early Earth. As one of the few cratons containing well-preserved Eoarchean to Neoarchean basement on Earth, the North China Craton is an ideal natural laboratory to unravel the early crustal evolution. It is controversial whether the Archean tectonothermal events in this area represents reworking or growth of the continental crust. To solve this issue, we have compelled field-based mapping, zircon U–Pb dating by SHRIMP RG and LA–ICP–MS U–Pb, zircon SHRIMP SI oxygen and LA–MC–ICP–MS Hf isotope, and whole-rock Nd–O isotope analyses from the Archean granitoids in northern Liaoning, North China Craton. On the basis of zircon U–Pb isotopic dating and measured geological section investigation, two distinct magmatic suites as enclaves in the Jurassic granites are recognized, viz. a newly discovered 3.0 Ga crustal remnant and a 2.5 Ga granitoid. The Mesoarchean zircons from the 3.0 Ga granodioritic gneisses exhibit heterogeneous Hf isotopic compositions, with the most radiogenic analysis (εHf(t) = +3.8) following the depleted mantle evolution array and the most unradiogenic εHf(t) extending down to −3.4. This implies that both ancient continental crust at least as old as 3.4 Ga and depleted mantle contributed to the magma source of the protoliths of the Mesoarchean gneisses. The εHf(t) values of the Neoarchean zircons from these gneisses overlap the 3.4–3.0 Ga zircon evolution trend, indicating that the ancient crustal materials have been reworked during the late Neoarchean. The Neoarchean zircons from the 2.5 Ga granitoids have a relatively small variation in the Hf isotope and are mainly plotted in the 3.0–2.8 Ga zircon evolution field. However, taking all the εHf(t) values of the Neoarchean zircons into the consideration, we find that the Hf model age of the Neoarchean zircon does not represent the time of crustal growth or reworking but are artifacts of magma mixing. The interaction between the magmas derived from the ancient crustal materials and the depleted mantle is also supported by zircon O isotopic data and Hf–O isotopic modeling of the Neoarchean granitoids. Both Mesoarchean and late Neoarchean tectonothermal events involved synchronous crustal growth and reworking, which may be applicable to other parts of the world.  相似文献   

15.
Recent analytical developments in germanium stable isotope determination by multicollector ICP‐MS have provided new perspectives for the use of Ge isotopes as geochemical tracers. Here, we report the germanium isotope composition of the NIST SRM 3120a elemental reference solution that has been calibrated relative to internal isotopic standard solutions used in the previous studies. We also intercalibrate several geological reference materials as well as geological and meteoritic samples using different techniques, including online hydride generation and a spray chamber for sample introduction to MC‐ICP‐MS, and different approaches for mass bias corrections such as sample–calibrator bracketing, external mass bias correction using Ga isotopes and double‐spike normalisation. All methods yielded relatively similar precisions at around 0.1‰ (2s) for δ74/70Ge values. Using igneous and mantle‐derived rocks, the bulk silicate Earth (BSE) δ74/70Ge value was re‐evaluated to be 0.59 ± 0.18‰ (2s) relative to NIST SRM 3120a. Several sulfide samples were also analysed and yielded very negative values, down to ?4.3‰, consistent with recent theoretical study of Ge isotope fractionation. The strong heavy isotope depletion in ore deposits also contrasts with the generally positive Ge isotope values found in many modern and ancient marine sediments.  相似文献   

16.
Nd–Hf isotopic decoupling has frequently been observed in the continental and oceanic mantle, but its origin remains controversial. Here we present combined elemental and Sr–Nd–Hf isotopic study on peridotite xenoliths entrained in Cenozoic basalts from Shuangliao and Jiaohe in Northeast China, which provides insight into this issue. The data reveal a heterogeneous lithospheric mantle beneath Northeastern China, consisting of fertile (type I) to strongly refractory (type II) peridotites. Type I peridotites are largely shielded from late metasomatism, thus preserving information of depletion events. Nd model age suggests a Proterozoic lithospheric mantle beneath NE China. Type II peridotites are mostly refractory harzburgites and show ubiquitous enrichment of incompatible elements. They are further divided into two sub-groups. Clinopyroxenes from type IIa samples have high and wide Lu/Hf (0.34–1.3) and very radiogenic Hf isotopic ratios (εHf = 44.4–63.8). Hf concentration is generally low (0.12–0.43 ppm) and plots along or slightly above the modeled partial melting depletion trend. In contrast, Nd content in type IIa clinopyroxenes is significantly higher than the modeled concentrations in residues at a given degree of melt depletion. The difference in enrichment of Hf and Nd translates to decoupling of Lu/Hf–Sm/Nd ratios and of Nd–Hf isotopes (εNd = −1.3 to 8.4). Clinopyroxenes from most of type IIb peridotites have relatively low Lu/Hf ratios (0.04–0.24) and coupled Nd–Hf isotopes. Both Hf and Nd plot significantly above the depletion trend; their concentrations are governed by the equilibrium partitioning between percolating melt and peridotites. The distinct geochemical characteristics of type IIa and type IIb clinopyroxenes may have resulted from chromatographic percolation of small volumes of silicate melts, in which percolation fronts of incompatible elements are dependent on their relative incompatibilities.  相似文献   

17.
We present the first report of geochemical data for submarine basalts collected by a manned submersible from Rurutu, Tubuai, and Raivavae in the Austral Islands in the South Pacific, where subaerial basalts exhibit HIMU isotopic signatures with highly radiogenic Pb isotopic compositions. With the exception of one sample from Tubuai, the 40Ar/39Ar ages of the submarine basalts show no significant age gaps between the submarine and subaerial basalts, and the major element compositions are indistinguishable at each island. However, the variations in Pb, Sr, Nd, and Hf isotopic compositions in the submarine basalts are much larger than those previously reported in subaerial basalts. The submarine basalts with less-radiogenic Pb and radiogenic Nd and Hf isotopic compositions show systematically lower concentrations in highly incompatible elements than the typical HIMU basalts. These geochemical variations are best explained by a two-component mixing process in which the depleted asthenospheric mantle was entrained by the mantle plume from the HIMU reservoir during its upwelling, and the melts from the HIMU reservoir and depleted asthenospheric mantle were then mixed in various proportions. The present and compiled data demonstrate that the HIMU reservoir has a uniquely low 176Hf/177Hf decoupled from 143Nd/144Nd, suggesting that it was derived from an ancient subducted slab. Moreover, the Nd/Hf ratios of the HIMU basalts and curvilinear Nd–Hf isotopic mixing trend require higher Nd/Hf ratios for the melt from the HIMU reservoir than that from the depleted mantle component. Such elevated Nd/Hf ratios could reflect source enrichment by a subducted slab during reservoir formation.  相似文献   

18.
Lunar rocks are inferred to tap the different fossil cumulate layers formed during crystallisation of a lunar magma ocean (LMO). A coherent dataset, including Zr isotope data and high precision HFSE (W, Nb, Ta, Zr, Hf) and REE (Nd, Sm, Lu) data, all obtained by isotope dilution, can now provide new insights into the processes active during LMO crystallisation and during the petrogenesis of lunar magmas. Measured 92Zr and 91Zr abundances agree with the terrestrial value within 0.2 ε-units. Incompatible-trace-element enriched rocks from the Procellarum KREEP Terrane (PKT) display Nb/Ta and Zr/Hf above the bulk lunar value (ca. 17), and mare basalts display lower ratios, generally confirming the presence of complementary enriched and depleted mantle reservoirs on the Moon. The full compositional spectrum of lunar basalts, however, also requires interaction with ilmenite-rich layers in the lunar mantle. Notably, the high-Ti mare basalts analysed display the lowest Nb/Ta and Zr/Hf of all lunar rocks, and also higher Sm/Nd at similar Lu/Hf than low-Ti basalts. The high-Ti basalts also exhibit higher and strongly correlated Ta/W (up to 25) and Hf/W (up to 140), at similar W contents, which is difficult to reconcile with ortho- and clinopyroxene-controlled melting. Altogether, these patterns can be explained via assimilation of up to ca. 20% of ilmenite- and clinopyroxene-rich LMO cumulates by more depleted melts from the lower lunar mantle. Direct melting of ilmenite-rich cumulates or the possible presence of residual metals in the lunar mantle both cannot easily account for the observed Ta/W and Hf/W patterns. Cumulate assimilation is also a viable mechanism that can partially buffer the Lu/Hf of mare basalts at relatively low values while generating variable Sm/Nd. Thus, the dichotomy between low Lu/Hf of lunar basalts and high time integrated source Lu/Hf as inferred from Hf isotope compositions can potentially be explained. The proposed assimilation model also has important implications for the short-lived nuclide chronology of the Earth-Moon system. The new Hf/W and Ta/W data, together with a compilation of existing W-Th-U data for lunar rocks, indicate that the terrestrial and lunar mantles are indistinguishable in their Hf/W. Virtually identical εW and Hf/W in the terrestrial and lunar mantle suggest a strong link between final core-mantle equilibration on Earth and the Moon forming giant impact. Previously, linear arrays of lunar samples in 182W vs. Hf/W and 142Nd vs. Sm/Nd spaces have been interpreted as isochrons, arguing for LMO crystallisation as late as 250 Myrs after solar system formation. Based on the proposed assimilation model, the 182W and 142Nd in many lunar magmas can be shown to be decoupled from their ambient Hf/W and Sm/Nd source compositions. As a consequence, the 182W vs. Hf/W and 142Nd vs. Sm/Nd arrays would constitute mixing lines rather than isochrons. Hence, the lunar 182Hf-182W and 146Sm-142Nd data would be fully consistent with an “early” crystallisation age of the LMO, even as early as 50 Myrs after solar system formation when the Moon was probably formed.  相似文献   

19.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

20.
Although initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass‐dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two‐stage chromatography procedure, Ni isotope ratios were measured by MC‐ICP‐MS and were corrected for instrumental mass bias using a double‐spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04‰, and intermediate measurement precision for NIST SRM 986 was 0.05‰ (2s). Igneous‐ and mantle‐derived rocks displayed a restricted range of δ60/58Ni values between ?0.13 and +0.16‰, suggesting an average BSE composition of +0.05‰. Manganese nodules (Nod A1; P1), shale (SDO‐1), coal (CLB‐1) and a metal‐contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06‰, whereas komatiite‐hosted Ni‐rich sulfides varied from ?0.10 to ?1.03‰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号