首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在现有的碎屑沉积地质体构型分级方案基础上,充分考虑自然界中河流沉积演化规律以及海上油田的资料基础与经济开发尺度等因素,遵循地质体分级原则与依据,建立了海上油田河流相复合砂体构型分级方案.从地质成因、主控因素、时空规模等方面系统阐述了河流相复合砂体13级构型单元的基本特征,并解析其与相关沉积地质体级次的关联性.与现有的储...  相似文献   

2.
泌阳断陷湖盆陆相层序内部构型研究   总被引:3,自引:0,他引:3  
胡受权 《河南地质》1998,16(1):21-30
断陷湖盆陆相层序内部构型主要研究各级层序单元内部不同环境下形成的地质及其在空间上的配置关系。盆地充填序列及构造层序可用沉积总体样式来反映其内部构型;地震层序(层序组)及层序可用沉积体系来描述其内部构型;体系域(小层序组),小层序及小层单元可分别用沉积相(亚相),微相及岩性相来刻划其内部构型。泌阳断陷层序组ⅡD(即核三上段)是其油气勘探的主要目的层段,其中包含三个陆相层序,在双河一赵凹地区表现为总和  相似文献   

3.
构型分级是深水油气高效开发重要的技术手段和指导方法。目前关于深水水道沉积体的构型分级方案缺乏较为统一的认识和标准,造成同一沉积单元的构型划分存在规模和成因等多解性问题,这制约了深水沉积理论的发展和油气勘探开发进程。在不同构型单元的沉积规模、叠置关系、时间跨度以及成因演化等基础上,采用正序分级原则,建立了相对系统的深水水道沉积体构型分级方案和结构样式。方案将水道沉积体划分为11级构型单元,1级单元为沉积颗粒段,包括孔隙非均质性、颗粒非均质性和填隙物非均质性;2级单元为纹层,多表现为平直状、波状、弯曲状、透镜状及不规则状;3级单元为岩层内均质段,如鲍马序列某一段;4级单元为岩层,如完整鲍马序列;5级单元为岩层组,包括“单一韵律叠置”和“砂体泥岩互层”两类;6级单元为次级水道单元,多呈透镜体型和楔形体型;7级为单一水道,可划分为层状充填、束状充填、侧积、切叠以及块状充填5种类型;8级单元为复合水道,由多期单一水道叠置,9级为复合水道系列,为多期复合水道叠置,8级单元和9级单元按其内部水道组合关系均可划分为离散型、拼接型和紧凑型三种类型;10级单元为水道体系,包括限制性、半限制性以及非限制性水...  相似文献   

4.
在现有的碎屑沉积地质体构型分级方案基础上,充分考虑自然界中河流沉积演化规律以及海上油田的资料基础与经济开发尺度等因素,遵循地质体分级原则与依据,建立了海上油田河流相复合砂体构型分级方案。从地质成因、主控因素、时空规模等方面系统阐述了河流相复合砂体13级构型单元的基本特征,并解析其与相关沉积地质体级次的关联性。与现有的储层构型分级的差异主要在于新增了“复合点坝”级次,复合点坝是多期残存点坝以复合体形式叠置而成的沉积单元,该级次是储层构型理论、海上油田资料分辨能力与经济开发尺度三者的契合点,是海上油田“地震导向、井震联合”构型研究思路的良好实践。河流相复合砂体构型分级对于指导海上油气开发具有一定的优势。  相似文献   

5.
精细刻画砂岩储层内部结构,可为柴达木盆地西部(柴西)斜坡区古近系下干柴沟组下段岩性油气藏勘探开发指明方向。以高精度层序地层学、砂体构型分析理论和方法为指导,以3D地震、钻/测井、岩心资料为基础,井震联合标定,综合分析了柴西斜坡区下干柴沟组下段层序地层发育规律与层序格架内砂体结构特点。结果表明,柴西斜坡区下干柴沟组下段整体为一个区域性湖侵序列,内部可划分为2个三级层序,4个四级层序(EMSQ1~4)。下干柴沟组下段沉积期,由早至晚,A/S(可容纳空间与沉积物供给比值)持续增大,四级层序结构由向上变深的半旋回型逐渐转变为向上变浅为主、向上变深为次的非对称型。沉积相则由辫状河三角洲平原演变为前缘、滨浅湖亚相。研究区主要发育分流河道、水下分流河道、滩坝3类储层砂体,砂体叠加样式和分布规律与四级层序结构相关。三角洲平原分流河道砂体主要发育于EMSQ1中,砂体相互切割和叠置程度高,连通性好;三角洲前缘分流河道砂体主要发育于EMSQ2~3中,多呈叠加-孤立型,连通性差;滨浅湖滩坝砂体主要发育EMSQ4中,砂体呈孤立状,层内连通性佳,层间连通性差。指出现阶段岩性油气藏勘探应重点围绕EMSQ4层序内发育的滨浅湖滩坝砂体展开。  相似文献   

6.
邹拓  刘应忠  聂国振 《现代地质》2014,28(3):611-616
点坝是曲流河单砂体沉积单元中最重要的储集砂体,其内部侧积层是控制剩余油分布的主要因素。以港东油田二区五先导试验块为例,综合运用测井、岩心、密井网、水平井等资料,对点坝内部构型进行解剖,定量认识试验区侧积层厚度为0.2~0.3 m、倾角3.5°,侧积体规模、期次、大小不一。分级次嵌套式二次加密建立构型级别精细三维地质模型,并开展了精细油藏数值模拟研究,同时结合测井、岩心、分析化验等资料,认为剩余油主要分布在砂体顶部和侧积层附近。应用地质-建模-数模一体化研究成果,指导方案部署与现场实施,取得了较好效果,为点坝内部构型精细研究提供了一套新的思路与方法。  相似文献   

7.
为解释榆科油田榆108和榆24断块东营组存在的油水关系复杂、注采不对应、注水开发效率差等问题.通过采用地质、地球物理及开发动态资料,开展沉积微相、单河道及点坝砂体储层构型研究,提出2类河流相砂体连通模式;结合生产动态,在研究区内河流相储层中,划分出4类油藏单元和5类油藏单元组合.给出3个实例,证明基于沉积微相和储层构型研究划分出的油藏单元,可用于解释油藏勘探开发中暴露的矛盾.该研究可为下一步油藏精细开发调整、提高油藏开发水平提供依据.   相似文献   

8.
基于台湾海峡西部新采集的高分辨率二维地震资料及钻井数据,结合区域地质资料和前人研究成果,建立台湾海峡西部高精度等时地层格架,在此基础上厘定了地质年代属性和沉积相特征分析。研究表明第四纪地层识别出6个三级层序界面,对应地划分为5个三级层序。研究区地震相主要有席状平行—亚平行地震相、前积地震相、下切谷充填地震相、充填状低连续地震相和充填状杂乱地震相等,不同的地震相及其组合代表特定的沉积体系。通过以上分析可知研究区新生代主要发育于海陆过渡地带,主要发育冲积/洪积平原相和滨岸平原相,在此基础上分析沉积演化特征,为台湾海峡西部海域进行精细勘探提供地质依据,这对将来的油气勘探具有重要的指导意义。  相似文献   

9.
为评价研究区的油气勘探潜力,指明下一步油气勘探方向,结合区域地质背景,运用层序地层学、地震相分析等技术,对研究区沉积相与沉积演化进行分析,并阐述了其油气地质条件与勘探方向。结果表明,研究区上上新统沉积相类型以三角洲沉积为主,该时期经历了海侵-海退的变化,沉积层序表现为多期的前三角洲-三角洲前缘叠合体。沉积特征决定了该区上上新统生储盖组合配置良好,同时新构造运动有利于多种圈闭的发育。该区油气成藏条件较好,具有广阔的勘探前景。  相似文献   

10.
沉积学研究对济阳断陷湖盆油气勘探开发的推动作用   总被引:6,自引:0,他引:6  
李阳  邱桂强  刘建民 《沉积学报》2004,22(3):400-407
胜利油田勘探开发的40年,也是沉积学应用研究的40年。从沉积相和沉积体系,到地震地层学和层序地层格架、断裂构造对湖盆沉积的控制作用以及储层非均质模式的建立等,处处体现了沉积学对油气勘探开发的推动作用。近年来,胜利油田在断陷湖盆沉积动力学、层序地层学与岩性油气藏勘探开发、沉积单元与流动单元等基础理论、研究手段和应用成效等方面进行了深入的探讨,促进了断陷湖盆储层沉积学的发展。  相似文献   

11.
Thick till sheets deposited during the Quaternary form significant aquitards in many areas of North America. However, the detailed sedimentary heterogeneity and architecture and depositional history of till units are not well understood. This study utilizes architectural element analysis to delineate the internal sedimentary architecture of the Tiskilwa Formation exposed at two outcrop sections in north‐central Illinois, USA. Architectural element analysis facilitates systematic delineation of sedimentary architecture based on the nature of facies contacts and change in facies associations, delineation of unit geometries and understanding of depositional processes at different scales of resolution; making architectural element analysis suitable for the sedimentological analysis and palaeoenvironmental reconstruction of subglacial deposits. Eleven facies types are identified in this study, including sand, gravel and diamict facies that record a suite of subglacial depositional processes. Detailed analysis of facies contacts (bounding surface hierarchy) and change in facies associations allows the delineation of five architectural elements, including coarse‐grained lens, coarse‐grained sheet, mixed zone, diamict lens and diamict sheet elements. The spatial arrangement and genetic interpretation of elements, and their spatial relationship with fifth‐order bounding surfaces, allows the delineation of five larger scale architectural units (‘element associations’), which can be mapped in the local study area and record at least three stacked successions of meltwater accumulation and till deposition. The results of this study can be utilized for architectural analysis of till sheets and provide insight to groundwater flow pathways through till in the study area and elsewhere.  相似文献   

12.
In terminal fluvial-fan systems, characteristic proximal to distal variations in sedimentary architectures are recognized to arise from progressive downstream loss of water discharge related to both infiltration and evaporation. This work aims to elucidate downstream trends in facies and architecture across the medial and distal zones of terminal-fan systems, which record transitions from deposits of channel elements to lobe-like and sheet-like elements. This is achieved via a detailed characterization of ancient ephemeral fluvial deposits of the well-exposed Kimmeridgian Tordillo Formation (Neuquén Basin, Argentina). The fine sand-prone and silt-prone succession associated with the medial to distal sectors of the system has been studied to understand relationships between depositional processes and resulting architectures. Facies and architectural-element analyses, and quantification of resulting sedimentological data at multiple scales, have been undertaken to characterize sedimentary facies, facies transitions, bed types, architectural elements and larger-scale architectural styles. Eight bed types with distinct internal facies transitions are defined and interpreted in terms of different types of flood events. Channelized and non-channelized architectural elements are defined based on their constituent bed types and their external geometry. The most common elements are terminal lobes, which are composite bodies within which largely unconfined sandy deposits are stacked in a compensational manner; a hierarchical arrangement of internal components is recognized. Proximal feeder-channel avulsion events likely controlled the evolution of terminal-lobe elements and their spatiotemporal shifts. Stratigraphic relations between architectural elements record system-wide trends, whereby a proximal sector dominated by channel elements passes downstream via a gradational transition to a medial sector dominated by sandy terminal-lobe elements, which in turn passes further downstream to a distal sector dominated by silty terminal lobe-margin and fringing deposits. This work enhances current understanding of the stratigraphic record of terminal fluvial systems at multiple scales, and provides insight that can be applied to predict the facies and architectural complexity of terminal fluvial successions.  相似文献   

13.
Deepwater/deep-marine turbidite lobes are the most distal part of a siliciclastic depositional system and hold the largest sediment accumulation on the seafloor. As many giant hydrocarbon provinces have been discovered within deepwater lobe deposits, they represent one of the most promising exploration targets for hydrocarbon industry. Deepwater exploration is characterized by high cost, high risk but insufficient data because of the deep/ultra–deepwater depth. A thorough understanding of the deepwater turbidite lobe architecture, hierarchy, stacking pattern and internal facies distribution is thus vital. Recently, detailed outcrop characterizations and high–resolution seismic studies have both revealed that the deepwater lobe deposits are characterized into four–fold hierarchical arrangements from "beds", to "lobe elements", to "lobes" and to "lobe complex". Quantitative compilations have shown that hierarchical components of lobe deposits have similar length to width ratios but different width to thickness ratios depending on different turbidite systems. At all hierarchical scales, sand–prone hierarchical lobe units are always separated by mud–prone bounding units except when the bounding units are eroded by their overlying lobe units thus giving rise to vertical amalgamation and connectivity. Amalgamations often occur at more proximal regions suggesting high flow energy. A mixed flow behavior may occur towards more distal regions, resulting in deposition of "hybrid event beds". These synthesized findings could(1) help understand the lobe reservoir distribution and compartmentalization therefore benefit the exploration and development of turbidite lobes within the deep marine basins(e.g. South China Sea) and(2) provide rules and quantitative constraints on reservoir modeling. In addition, the findings associated with deepwater turbidite lobes might be a good starting point to understand the sedimentology, architecture and hierarchy of turbidites in deep lacustrine environment.  相似文献   

14.
Traditional facies models lack quantitative information concerning sedimentological features: this significantly limits their value as references for comparison and guides to interpretation and subsurface prediction. This paper aims to demonstrate how a database methodology can be used to generate quantitative facies models for fluvial depositional systems. This approach is employed to generate a range of models, comprising sets of quantitative information on proportions, geometries, spatial relations and grain sizes of genetic units belonging to three different scales of observation (depositional elements, architectural elements and facies units). The method involves a sequential application of filters to the knowledge base that allows only database case studies that developed under appropriate boundary conditions to contribute to any particular model. Specific example facies models are presented for fluvial environmental types categorized on channel pattern, basin climatic regime and water‐discharge regime; the common adoption of these environmental types allows a straightforward comparison with existing qualitative models. The models presented here relate to: (i) the large‐scale architecture of single‐thread and braided river systems; (ii) meandering sub‐humid perennial systems; (iii) the intermediate‐scale and small‐scale architecture of dryland, braided ephemeral systems; (iv) the small‐scale architecture of sandy meandering systems; and (v) individual architectural features of a specific sedimentary environment (a terminal fluvial system) and its sub‐environments (architectural elements). Although the quantification of architectural properties represents the main advantage over qualitative facies models, other improvements include the capacity: (i) to model on different scales of interest; (ii) to categorize the model on a variety of environmental classes; (iii) to perform an objective synthesis of many real‐world case studies; (iv) to include variability‐related and knowledge‐related uncertainty in the model; and (v) to assess the role of preservation potential by comparing ancient‐system and modern‐system data input to the model.  相似文献   

15.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

16.
Distinct styles of fluvial deposition in a Cambrian rift basin   总被引:1,自引:0,他引:1  
Process‐based and facies models to account for the origin of pre‐vegetation (i.e. pre‐Silurian) preserved fluvial sedimentary architectures remain poorly defined in terms of their ability to account for the nature of the fluvial conditions required to accumulate and preserve architectural elements in the absence of the stabilizing influence of vegetation. In pre‐vegetation fluvial successions, the repeated reworking of bars and minor channels that resulted in the generation and preservation of broad, tabular, stacked sandstone‐sheets has been previously regarded as the dominant sedimentary mechanism. This situation is closely analogous to modern‐day poorly vegetated systems developed in arid climatic settings. However, this study demonstrates the widespread presence of substantially more complex stratigraphic architectures. The Guarda Velha Formation of Southern Brazil is a >500 m‐thick synrift fluvial succession of Cambrian age that records the deposits and sedimentary architecture of three distinct fluvial successions: (i) an early rift‐stage system characterized by coarse‐grained channel elements indicative of a distributive pattern with flow transverse to the basin axis; and two coeval systems from the early‐ to climax‐rift stages that represent (ii) an axially directed, trunk fluvial system characterized by large‐scale amalgamated sandy braid‐bar elements, and (iii) a distributive fluvial system characterized by multi‐storey, sandy braided‐channel elements that flowed transverse to the basin axis. Integration of facies and architectural‐element analysis with regional stratigraphic basin analysis, palaeocurrent and pebble‐provenance analysis demonstrates the mechanisms responsible for preserving the varied range of fluvial architectures present in this pre‐vegetation, rift‐basin setting. Identified major controls that influenced pre‐vegetation fluvial sedimentary style include: (i) spatial and temporal variation in discharge regime; (ii) the varying sedimentological characteristics of distinct catchment areas; (iii) the role of tectonic basin configuration and its direct role in influencing palaeoflow direction and fluvial style, whereby both the axial and transverse fluvial systems undertook a distinctive response to syn‐depositional movement on basin‐bounding faults. Detailed architectural analyses of these deposits reveal significant variations in geometry, with characteristics considerably more complex than that of simple, laterally extensive, stacked sandstone‐sheets predicted by most existing depositional models for pre‐vegetation fluvial systems. These results suggest that the sheet‐braided style actually encompasses a varied number of different pre‐vegetation fluvial styles. Moreover, this study demonstrates that contemporaneous axial and transverse fluvial systems with distinctive architectural expressions can be preserved in the same overall tectonic and climatic setting.  相似文献   

17.
《Sedimentary Geology》2005,173(1-4):91-119
The sedimentary architecture of a submarine canyon-fill supplying sediment to a deep-water fan system in the Adana Basin, southern Turkey is described and quantified. The canyon is at least 9-km long, 3–4-km wide, asymmetric in cross-section and has an exposed fill, 360-m thick consisting of sands and gravels deposited in sheets across the entire width of the canyon. Normal graded and nongraded pebbly sandstones reflecting deposition from both waning and waxing high-density turbidity currents dominate these deposits. Facies are identified and correlated between closely spaced sedimentary logs. A hierarchy of bedding scales is recognised, ranging from individual beds and their sedimentary structures through 3–21-m-thick packages of beds to 100+m thick major units. This hierarchy provides the framework for computer-generated 3D models where sandstone bodies and facies are stochastically modelled to provide a better understanding of the internal sedimentary architecture within similar types of canyons in subsurface or in areas of poor exposure.  相似文献   

18.
近10年来,国内外的沉积构型研究从之前的以精细表征为主扩展到成因机制分析。文中以同生逆断层控制的冲积扇、可容空间影响下的曲流河点坝、浅水缓坡背景下的三角洲指状砂坝以及大陆斜坡微盆地背景下的重力流沉积等为例介绍相关研究进展。(1)挤压盆地边缘复杂的同生逆断裂构造活动控制了冲积扇的构型要素类型、叠置样式、分布演化及定量规模,表现出有别于构造稳定条件下的冲积扇构型模式;(2)曲流河在可容空间较小的情况下可发育顺流迁移型点坝,表现出特殊的微相类型、分布样式及旋回特征,而随着A/S值的不断增大,曲流河点坝可由鳞片状逐步演变为条带状,最后变为点状;(3)浅水三角洲中可发育类似于河控较深水三角洲中的指状砂坝沉积,其平面形态、微相组合样式、定量规模等特征受气候、沉积物供给、沉积水体等多因素的影响;(4)大陆斜坡微盆地内部可发育重力流水道、朵叶体、块状搬运体等多种构型要素类型,不同构型要素的空间分布样式、定量规模及构型演化模式受复杂地形地貌及构造活动的影响较为明显。综合原型模型分析、沉积物理模拟及数值模拟开展系统的定量化研究,建立定量的、可预测的碎屑岩沉积构型模式,是今后碎屑岩沉积构型研究的发展趋势。  相似文献   

19.
吴李泉  曹代勇 《地球学报》2002,23(5):447-452
西藏北部改则-班戈地区出露的中上侏罗统接奴群是残余弧后盆地的滨浅海相陆缘碎屑沉积,具有完整的水进-水退沉积旋回。主要沉积相类型有碎屑浅海、高能滨岸、陆源碎屑潮坪、碳酸盐合地、扇三角洲等,向南部冈底期-念青唐古拉岛弧方向超覆,向北部羌塘板片与广阔碳酸盐台地相的佣钦错群过渡。接奴群是该区最有潜力的油气勘探目的层。广阔的浅海相泥页岩为主要的烃源岩,早期滨岸相粗碎屑岩是主要的潜在储集岩,有可能形成的油气藏类型包括超覆岩性油气藏和构造油气藏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号