首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Element geochemistry of gold arsenic and mineralogical features of their sulfides in the Carlin-type gold depostis of the Qinling region are discussed in this paper.The initial contents of ore-forming elements such as glod and arsenic are high the ore-bearing rock series in the Qinling region.Furthermore,both the metals are concentrated mainly in the diagenetic pyrite.Study on the mineralogy of arsenic-bearing sulfide minerals in the ores demonstrated that there is a poistive correlation between gold and arsenic in the sulfide minerals.Available evidence suggests that gold in the As-bearing sulfide minerals in likely to be presented as a charge species(Au ),and it is most possible for it to replace the exxcess arsenic at the site of iron and war probably deposited together with arsenic as solid in the sulfide minerals. Pyrite is composed of(Aux^3 ,Fe1-2^2 )([AsS]x^3-[S2]1-x^2-),and arenopyrite of (Aux^3 ,Fe1-x^3 )([AsS]x^3-[AsS2]1-x^3-).The occurrence of glod in the As-sulfied minerals from the Carlin-type gold depostis in the Qinling region has been confirmed by electron probe and transmission electron microscopic studies.The results show that gold was probably depostied together with arsenicas coupled solid solutions in sulfide minerals in the early stage of mineralization.Metallogenic chemical reactions concerning gold deposition in the Carlin-type As-rich gold deposits would involve oxidation of glod and concurrent reduction of arsenic.Later,the deposited gold as solid was remobilized and redistributed as exsolutions,as a result of increasing hydrothermal alteration and crystallization,and decreasing resistance to refractoriness of the host minerals.Gold occurs as sub-microscopic grains(ranging from 0.04tp 0.16μm in diameter)of native gold along micro factures in and crystalline grains of the sulfiedes.  相似文献   

2.
Calculations based on the available thermodynamic data of AuCl 2 and Au (HS) 2 indicate that AuCl 2 is responsible for the transport and enrichment of gold during the stage of pre-concentration in the source bed while Au (HS) 2 is the main gold species involved in the formation of gold deposits in response to hydrothermal reworking. Acid chloride solutions witha Cl > 10° and sulfur-rich solutions with aΣs in excess of 10−2 are held as important criteria for gold enrichment in the source bed and for the formation of gold deposits by subsequent hydrothermal event, respectively.  相似文献   

3.
The deposit under study is a hydrothermal filling-metasomatic vein type lead-zinc-silver deposit, in whichgold and silver can be recovered as by-products. These metals mainly occur as microgranular native gold,electrum, stephanite, acanthite, pyraragyrite, freibergite, and native silver. Gold minerals tend to be associatedwith galenobismutite, native bismuth and unnamed Bi_2Te. They are either enclosed in pyrite, marmatite,iron-bearing sphalerite and galens or fill the microfissures of these minerals. Silver minerals usually occur incleavages or fissures of galena, marmatite and pyrite, but are not associated with gold and bismuth minerals.Gold and silver mineralizations occurred later than lead and zinc, while the silver mineralization was precededby that of gold.  相似文献   

4.
Gold deposits such as the Aketishikan, Togetobie, Tasbig-Kokeydlas, Kums and Hongshanzui gold deposits in the Nurt area in Altay of Xinjiang were found in Member 3 rhyolite tufflava, fragmental lava and ignimbrite of the Carboniferous Hongshanzui Group. Trace and rare earth elements, sulfur, lead, oxygen and hydrogen isotopes, and geochronological studies indicate that the ore-forming material was mostly supplied by the Carboniferous volcanic rocks through water-rock interaction under a low-to-moderate temperature, and the hydrothermal ore-forming fluid came from meteoric water with some magmatic water input evolved from the granitic magmas. Gold deposits in the Nurt area as well as in the northern Altay might form in multiple stages, and the Yanshanian mineralization period should be paid more attention besides the Variscan mineralization period.  相似文献   

5.
西岭金矿床是胶东金矿集区内近来新发现的超大型破碎蚀变岩型金矿床(475吨@4.56 g/t),位于著名的三山岛金矿床的东侧。本文在详实的野外地质观察的基础上,系统介绍了西岭金矿床的基础地质特征,并运用光学显微镜和扫描电镜观察,结合电子探针分析,系统研究了西岭金矿床金的赋存状态。西岭金矿床大量金矿物(银金矿和自然金)主要赋存在Ⅱ阶段石英-黄铁矿和Ⅲ阶段灰石英-多金属硫化物脉中。西岭金矿床金矿物主要有晶隙金、裂隙金和包体金三种赋存状态,以晶隙金为主。金的主要载体矿物为黄铁矿,次为石英、黄铜矿和方铅矿等。金矿物粒度大小包括粗粒金、中粒金、细粒金和微粒金,以细粒-微粒为主。金矿物形态有粒状、叶片状、线状、钩状、枝杈状和哑铃状等,以粒状为主。金矿物成分以Au和Ag为主,含微量的Cu、Cr、Fe、Ni、Te、S等元素。金成色为685~831,以银金矿为主,含少量自然金。综合地质和地球化学特征,西岭金矿床为蚀变岩型金矿床,是由早白垩世中温岩浆热液充填-交代形成。  相似文献   

6.
7.
1IntroductionTheHongshijinggolddepositislocatedinthenorthofLuobupouLakeofRuoqiang ,about 30 0kmsouthwestofHamiCity ,Xinjiang .ItwasdiscoveredbytheSixthGeologicalTeamofXinjiangduringgeo chemicalexploration .TheHongshijinggolddeposit,whichoccursinthegold bearingformationcomposedofMiddleandLateCarboniferousvolcanicandpyroclasticrocks ,isabrittle ductileshearzonetypegolddepositcontrolledbyariftbelt.TheHongshijinggolddepositislocatedinthesouthwestoftheHongshi jing -Maotoushanmineralizationb…  相似文献   

8.
9.
Gold deposits in intrusive masses include the veinlet dissemination,quartz vein and veinlet dissemination vein types,They are distributed in fracture zones along the endocontact zone of a batholith or in the centre and edge of a stock.The metallogenic epochs are Yenshanian,Hercynian,Archean,Proterozoic and Himalayan,The gold deposits are characterized by a big difference in time span between gold mineralization and the formation of host masses Ore-forming materials were derived from the masses and auriferous strata and ore-forming fluids came from meteoric and formation waters.When circulating water was heated by ascending heat flow,gold would be extracted,concentrated and transported from auriferous rocks and then precipitated in the masses during the late tectonic movement,Finally gold deposits were formed in the intrusive masses.  相似文献   

10.
Gold deposits such as the Aketishikan, Togetobie, Tasbig-Kokeydlas, Kums and Hongshanzui gold deposits in the Nurt area in Altay of Xinjiang were found in Member 3 rhyolite tufflava, fragmental lava and ignimbrite of the Carboniferous Hongshanzui Group. Trace and rare earth elements, sulfur, lead, oxygen and hydrogen isotopes, and geochronological studies indicate that the ore-forming material was mostly supplied by the Carboniferous volcanic rocks through water-rock interaction under a low-to-moderate temperature, and the hydrothermal ore-forming fluid came from meteoric water with some magmatic water input evolved from the granitic magmas. Gold deposits in the Nurt area as well as in the northern Altay might form in multiple stages, and the Yanshanian mineralization period should be paid more attention besides the Variscan mineralization period.  相似文献   

11.
12.
13.
The composition of quartz inclusions and trace elements in ore indicate that gold-bearing fluid in the Xiadian gold deposit,Shandong Province,stemmed from both mantle and magma,belonging to a composite origin.Based on theoretical analysis and high temperature and high pressure experimental studies,gold-bearing fluid initiative localization mechanism and the forming environment of ore-host rocks are discussed in the present paper.The composite fluid extracted gold from rocks because of its expanding and injecting forces and injecting forces and flew through ore-conducive structures,leading to the breakup of rocks.The generation of ore-host faults and the precipitation of gold-bearing fluid occurred almost simultaneously.This study provides fur-ther information about the relationships between gold ore veins and basic-ultrabasic vein rocks and intermediate vein rocks,the spatial distribution of gold ore veins and the rules governing the migration of ore fluids.  相似文献   

14.
15.
The Rushan gold deposit, explored in recent years in the Jiaodong area, Shandong Province, is a quartz vein-type gold deposit hosted in granite. The temperature of its major mineralization episode is between 220°C and 280°C. The salinity of the ore-forming fluid is 5 % to 9% NaCl equivalent, with H2O and CO2 as the dominant gas constituents. The fluid is rich in Na+, Ca2+ and Cl, but relatively impoverished in K+ and F, characterized by either Ca2+ > Na+ > K+ (in three samples) or Na+ > Ca2+ > K+ (in six samples). Hydrogen and oxygen isotopes in the ore-forming fluid are highly variable with δ18 ranging between − 7.70‰ and 5. 97‰ and between − 128‰ and − 71‰. The possibility of lamprophyre serving as the source of gold can be excluded in view of its low gold content on the order of 2.5 × 10−9. Rb-Sr isochron ages of the deposit and the host Kunyushan granite are ( 104.8 ± 1.5) Ma and 134.6 Ma respectively with the respective initial Sr ratios of 0. 71307 and 0.7096. It is considered that the emplacement of the lamprophyre under a tensile environment had provided sufficient heat energy to facilitate deep circulation of meteoric water by which ore metals were extracted from the Kunyushan granite through long-term water-rock reaction. This project was financially supported by the National Natural Science Foundation of China.  相似文献   

16.
17.
The mode of occurrence of gold in the Yata micro-disseminated gold deposit is ap-proached through chemical phase studies coupled with ore-dressing monitoring and micro-beam analysis.The results showed that gold occurred for the most part as ultra-microscopic particles adsorbed on the surfaces or fracture planes of pyrite and other sulphides.The proportions of gold of different occurrences were estimated solutions containing nanometer-sized gold particles were prepared following the hydrolysis-reduction procedure and the adsorption of nanometer-sized gold on ordinary sulphides and rocks was experimentally determined.It is evident that sulphides are good adsorbents of gold and this is consistent with geological observations.  相似文献   

18.
19.
20.
The dating of fluid inclusions of quartz yields an Ar-Ar isochrone age of 320.4±6 Ma. Three types of fluid inclusions have been identified with the homogenization temperature ranging from 157℃ to 362℃. The homogenization temperature consists of two groups. The first group varies from 157℃ to 166℃, and the second from 232℃ to 362℃. Their chemical composition is dominated by Na+-Ca2+-Mg2+ and Cl-. The relative concentration of ions is characteristic by Na+>Ca2+>K+>Mg2+ and C1->SO42-> F-. The δD and δ18O values indicate that the ore-forming fluid originates from mixing of multi-source water. The Sarkobu gold deposit has experienced two mineralization stages: gold was enriched during the volcanic-exhalative-sedimentary process in the early stage, while the gold deposit was finally formed under compression-shearing during the orogenic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号