首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this work we evaluate seasonal forecasts performed with the global environmental multiscale model (GEM) using a variable resolution approach and with a high-resolution region over different geographical locations. Therefore, using two grid positions, one over North America and the other over the tropical Pacific-eastern Indian Ocean, we compare the seasonal predictions performed with the variable resolution approach with seasonal forecast performed with the uniform grid GEM model. For each model configuration, a ten-member ensemble forecast of 4?months is performed starting from the first of December of selected ENSO winters between 1982 and 2000. The sea surface temperature anomaly of the month preceding the forecast (November) is persisted throughout the forecast period. There is not enough evidence to indicate that a Stretch-Grid configuration has a clear advantage in seasonal prediction compared to a Uniform-Grid configuration. Forecasts with highly resolved grids placed over North America have more accurate seasonal mean anomalies and more skill in representing near surface temperature over the North American continent. For 500-hPa geopotential height, however, no configuration stands out to be consistently superior in forecasting the ENSO related seasonal mean anomalies and skill score.  相似文献   

3.
4.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   

5.
 We have developed a new method to accelerate tracer simulations to steady-state in a 3-D global ocean model, run off-line. Using this technique, our simulations for natural 14C ran 17 times faster when compared to those made with the standard non-accelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to re-initialize the parent model (at the original resolution). After re-initialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared 14C results from runs with and without this approach. Differences are less than 10‰ throughout 98.5% of the ocean volume. Predicted natural 14C appears reasonable over most of the ocean. In the Atlantic, modeled Δ14C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward; conversely, simulated Antarctic Bottom Water (AABW) does not penetrate northward beyond the equator as it should. In the Pacific, in surface eastern equatorial waters, the model produces a north–south assymetry similar to that observed; other global ocean models do not, because their resolution is inadequate to resolve equatorial dynamics properly, particularly the intense equatorial undercurrent. The model’s oldest water in the deep Pacific (at −239‰) is close to that observed (−248‰), but is too deep. Surface waters in the Southern Ocean are too rich in natural 14C due to inadequacies in the OGCM’s thermohaline forcing. Received: 18 March 1997 / Accepted: 27 July 1997  相似文献   

6.
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.  相似文献   

7.
This study examines the variability of the South America monsoon system (SAMS) over tropical South America (SA). The onset, end, and total rainfall during the summer monsoon are investigated using precipitation pentad estimates from the global precipitation climatology project (GPCP) 1979–2006. Likewise, the variability of SAMS characteristics is examined in ten Intergovernmental Panel on Climate Change (IPCC) global coupled climate models in the twentieth century (1981–2000) and in a future scenario of global change (A1B) (2081–2100). It is shown that most IPCC models misrepresent the inter-tropical convergence zone and therefore do not capture the actual annual cycle of precipitation over the Amazon and northwest SA. Most models can correctly represent the spatiotemporal variability of the annual cycle of precipitation in central and eastern Brazil such as the correct phase of dry and wet seasons, onset dates, duration of rainy season and total accumulated precipitation during the summer monsoon for the twentieth century runs. Nevertheless, poor representation of the total monsoonal precipitation over the Amazon and northeast Brazil is observed in a large majority of the models. Overall, MIROC3.2-hires, MIROC3.2-medres and MRI-CGCM3.2.3 show the most realistic representation of SAMS’s characteristics such as onset, duration, total monsoonal precipitation, and its interannual variability. On the other hand, ECHAM5, GFDL-CM2.0 and GFDL-CM2.1 have the least realistic representation of the same characteristics. For the A1B scenario the most coherent feature observed in the IPCC models is a reduction in precipitation over central-eastern Brazil during the summer monsoon, comparatively with the present climate. The IPCC models do not indicate statistically significant changes in SAMS onset and demise dates for the same scenario.  相似文献   

8.
Described is a system for analyzing and forecasting the air quality in the central regions of Russia, During the operation of the system, the detailed meteorological information provided by the WRF-ARW model is used by the CHIMERE chemistry transport model for simulating the processes of transport, chemical transformation, and deposition of atmospheric minor constituents. Considered is the quality of retrieved and forecasted (with the lead time up to three days) concentrations of O3, NO2, NO, CO, and PM10. The presented verification scores of pollutant concentrations demonstrate a relative success of the system. Demonstrated is a need in improving the data on the emissions of the air pollutants used for simulations. A procedure for the statistical correction of computed concentrations is described and verification scores of its results are given.  相似文献   

9.
The aim of the 222Rn measurements during the airborne campaign TROPOZ II, was first to help in the interpretation of the photochemical studies, and secondly to furnish a data set of 222Rn in the troposphere, for validation of atmospheric transport models. In this paper we present the 222Rn measurements, and their simulation with a 3-D atmospheric transport model based on observed winds. The 222Rn was measured using the active daughters deposit technique with isokinetic aerosol sampling. We have obtained 44 measurements distributed between 65° North and 55° South, from 1 to 11 km height. In 25% of cases, we found relatively high concentrations (> 300 mBq·scm) of 222Rn in the high troposphere (>8 km). The results of 3D simulations and the calculations of back-trajectories allow us to find the origins of the high 222Rn concentrations. The transport model reproduced most of the observed synoptic variations, but it overestimates the concentrations which implies a vertical transport of excessive velocity.  相似文献   

10.
Theoretical and Applied Climatology - Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea...  相似文献   

11.
12.
\     
辜旭赞  赵军  唐永兰 《暴雨灾害》2016,126(6):554-565

研究经纬网格三次样条函数(样条格式)变换准拉格朗日平流方案, 推导给出样条格式准拉格朗日预报方程通式, 设计一种准均匀经纬网格, 对气压、气温、风及广义牛顿力(加速度)场做\  相似文献   


13.
The CHIMERE mesoscale chemistry transport model is used for the quantitative assessment of the contribution of transboundary transport of anthropogenic admixtures from China to the surface concentrations of major suspended pollutants, aerosol PM10, ozone O3, and nitrogen oxides NOx in the Far Eastern region. Analyzed in detail are the time series of concentration of mentioned substances computed with the model taking account and not taking account of anthropogenic emissions in China. It is revealed that the transboundary transport of anthropogenic pollutants can cause the recurring episodes of manyfold increase in the concentration of PM10 in the south of Khabarovsk region, as well as more rare variations of O3 and NOx concentration. The trajectory and synoptic analysis demonstrated that the episodes of the increase in the concentration of PM10 and O3 in the south of the region mainly depend on the carryover of air masses from northeastern China in the front part of continental cyclones.  相似文献   

14.
In this study the global coupled atmosphere-ocean general circulation model ECHAM2/OPYC and its performance in simulating the present-day climate is presented. The model consists of the T21-spectral atmosphere general circulation model ECHAM2 and the ocean general circulation model OPYC with a resolution corresponding to a T42 Gaussian grid, with increasing resolution towards the equator. The sea-ice is represented by a dynamic thermodynamic sea-ice model with rheology. Both models are coupled using the flux correction technique. With the coupled model ECHAM2/OPYC a 210-year integration under present-day greenhouse gas conditions has been performed. The coupled model simulates a realistic mean climate state, which is close to the observations. The model generates several ENSO events without external forcing. Using traditional and advanced (POP-technique) methods these ENSO events have been analyzed. The results are consistent with the delayed action oscillator theory. The model simulates both a tropical and an extra-tropical response to ENSO, which are in good agreement with observations.  相似文献   

15.
A systematic characterization of multivariate dependence at multiple spatio-temporal scales is critical to understanding climate system dynamics and improving predictive ability from models and data. However, dependence structures in climate are complex due to nonlinear dynamical generating processes, long-range spatial and long-memory temporal relationships, as well as low-frequency variability. Here we utilize complex networks to explore dependence in climate data. Specifically, networks constructed from reanalysis-based atmospheric variables over oceans and partitioned with community detection methods demonstrate the potential to capture regional and global dependence structures within and among climate variables. Proximity-based dependence as well as long-range spatial relationships are examined along with their evolution over time, yielding new insights on ocean meteorology. The tools are implicitly validated by confirming conceptual understanding about aggregate correlations and teleconnections. Our results also suggest a close similarity of observed dependence patterns in relative humidity and horizontal wind speed over oceans. In addition, updraft velocity, which relates to convective activity over the oceans, exhibits short spatiotemporal decorrelation scales but long-range dependence over time. The multivariate and multi-scale dependence patterns broadly persist over multiple time windows. Our findings motivate further investigations of dependence structures among observations, reanalysis and model-simulated data to enhance process understanding, assess model reliability and improve regional climate predictions.  相似文献   

16.
Halogens in the atmosphere chemically destroy ozone. In the troposphere, bromine has higher ozone destruction efficiency than chlorine and is the halogen species with the widest geographical spread of natural sources. We investigate the relative strength of various sources of reactive tropospheric bromine and the influence of bromine on tropospheric chemistry using a 6-year simulation with the global chemistry transport model MOZART4. We consider the following sources: short-lived bromocarbons (CHBr3, CH2BrCl, CHBr2Cl, CHBrCl2, and CH2Br2) and CH3Br, bromine from airborne sea salt particles, and frost flowers and sea salt on or in the snowpack in polar regions. The total bromine emissions in our simulations add up to 31.7 Gmol(Br)/yr: 63 % from polar sources, 24.6 % from short-lived bromocarbons and 12.4 % from airborne sea salt particles. We conclude from our analysis that our global bromine emission is likely to be on the lower end of the range, because of too low emissions from airborne sea salt. Bromine chemistry has an effect on the oxidation capacity of the troposphere, not only due to its direct influence on ozone concentrations, but also by reactions with other key chemical species like HO x and NO x . Globally, the impact of bromine chemistry on tropospheric O3 is comparable to the impact of gas-phase sulfur chemistry, since the inclusion of bromine chemistry in MOZART4 leads to a decrease of the O3 burden in the troposphere by 6 Tg, while we get an increase by 5 Tg if gas-phase sulfur chemistry is switched off in the standard model. With decreased ozone burden, the simulated oxidizing capacity of the atmosphere decreases thus affecting species associated with the oxidation capacity of the atmosphere (CH3OOH, H2O2).  相似文献   

17.
Numerical studies of short-term transport and diffusion over regional distances have been made with a particle-in-cell model and compared with observations from the Cross-Appalachian Tracer Experiment. The plume configurations of all seven simulations show general agreement with the observed patterns. Frequency distributions of observed and predicted values are broadly similar, although correlation coefficients of points paired in space and time are poor; this results from small dislocations in predicted versus observed plume orientations.  相似文献   

18.
19.
20.
The interest in the development and improvement of dynamic global vegetation models (DGVMs), which have the potential to simulate fluxes of carbon, water and nitrogen, along with changes in the vegetation dynamics, within an integrated system, has been increasing. In this paper, some numerical schemes and a higher resolution soil texture dataset were employed to improve the Sheffield Dynamic Global Vegetation Model (SDGVM). Using eddy covariance-based measurements, we then tested the standard version of the SDGVM and the modified version of the SDGVM. Detailed observations of daily carbon and water fluxes made at the upland oak forest on the Walker Branch Watershed in Tennessee, USA offered a unique opportunity for these comparisons. The results revealed that the modified version of the SDGVM did a reasonable job of simulating the carbon and water flux and the variation of soil water content (SWC). However, at the end of the growing season, it failed to simulate the effect of the limitations on the soil respiration dynamics and as a result underestimated this respiration. It was also noted that the modified version overestimated the increase in the SWC following summer rainfall, which was attributed to an inadequate representation of the ground water and thermal cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号