首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minerals constitute a primary ecosystem control on organic C decomposition in soils, and therefore on greenhouse gas fluxes to the atmosphere. Secondary minerals, in particular, Fe and Al (oxyhydr)oxides—collectively referred to as “oxides” hereafter—are prominent protectors of organic C against microbial decomposition through sorption and complexation reactions. However, the impacts of Mn oxides on organic C retention and lability in soils are poorly understood. Here we show that hydrous Mn oxide (HMO), a poorly crystalline δ-MnO2, has a greater maximum sorption capacity for dissolved organic matter (DOM) derived from a deciduous forest composite Oi, Oe, and Oa horizon leachate (“O horizon leachate” hereafter) than does goethite under acidic (pH 5) conditions. Nonetheless, goethite has a stronger sorption capacity for DOM at low initial C:(Mn or Fe) molar ratios compared to HMO, probably due to ligand exchange with carboxylate groups as revealed by attenuated total reflectance-Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy and scanning transmission X-ray microscopy–near-edge X-ray absorption fine structure spectroscopy coupled with Mn mass balance calculations reveal that DOM sorption onto HMO induces partial Mn reductive dissolution and Mn reduction of the residual HMO. X-ray photoelectron spectroscopy further shows increasing Mn(II) concentrations are correlated with increasing oxidized C (C=O) content (r = 0.78, P < 0.0006) on the DOM–HMO complexes. We posit that DOM is the more probable reductant of HMO, as Mn(II)-induced HMO dissolution does not alter the Mn speciation of the residual HMO at pH 5. At a lower C loading (2 × 102 μg C m?2), DOM desorption—assessed by 0.1 M NaH2PO4 extraction—is lower for HMO than for goethite, whereas the extent of desorption is the same at a higher C loading (4 × 102 μg C m?2). No significant differences are observed in the impacts of HMO and goethite on the biodegradability of the DOM remaining in solution after DOM sorption reaches steady state. Overall, HMO shows a relatively strong capacity to sorb DOM and resist phosphate-induced desorption, but DOM–HMO complexes may be more vulnerable to reductive dissolution than DOM–goethite complexes.  相似文献   

2.
Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (ZnIV) and octahedral (ZnVI) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn3O7·3H2O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized density functional theory (DFT) to examine the ZnIV-TCS and ZnVI-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron overlap populations obtained by DFT for isolated ZnIV-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is ZnVI-TCS. Comparison between geometry-optimized ZnMn3O7·3H2O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn3O7·H2O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO2, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 Å, while surface O bordering the vacancy move away from it by 0.16-0.21 Å, in agreement with recent X-ray absorption spectroscopic analyses.  相似文献   

3.
《Applied Geochemistry》1994,9(4):403-412
To improve our understanding of As and Se leaching from fly ash it is necessary to know the underlying geochemical processes. It has been previously suggested that sorption processes may control the partitioning of these trace elements during leaching of fly ash. In natural systems, such as soils and sediments, As and Se have been shown to interact with iron oxides at acidic pH, with CaCO3 at alkaline pH and with clay-minerals at neutral pH. By analogy, we compared the leaching of As and Se from fly ash with the sorption of arsenate and selenite on hematite, portlandite and mullite. It was possible to describe the leaching of As and Se from acidic fly ash with a simplified model of surface complexation with iron oxides. The apparent adsorption constants calculated from the leaching experiments resembled those calculated from our sorption experiments with hematite and values published for amorphous iron oxide. The leaching of As and Se from alkaline fly ash was compared with the sorption of arsenate and selenite on portlandite. A Ca-phase was shown to control the leaching process. Portlandite was shown to be an important sorbent for arsenate and to a lesser extent for selenite, at pH > 12.4. The affinity of arsenate and selenite for mullite was low. Maximum sorption was reached in the neutral pH ranges, similar to the interactions of oxyanions with kaolinite. Sorption reversibility of arsenate on all three minerals considered in this study was less, or at least slower, than that of selenite. This feature may partly explain that the fraction of As available for leaching from fly ash is generally lower.  相似文献   

4.
Arsenic(V), as the arsenate (AsO4)3− ion and its conjugate acids, is strongly sorbed to iron(III) oxides (α-Fe2O3), oxide hydroxides (α-,γ-FeOOH) and poorly crystalline ferrihydrite (hydrous ferric oxide). The mechanism by which arsenate complexes with iron oxide hydroxide surfaces is not fully understood. There is clear evidence for inner sphere complexation but the nature of the surface complexes is controversial. Possible surface complexes between AsO4 tetrahedra and surface FeO6 polyhedra include bidentate corner-sharing (2C), bidentate edge-sharing (2E) and monodentate corner-sharing (1V). We predicted the relative energies and geometries of AsO4-FeOOH surface complexes using density functional theory calculations on analogue Fe2(OH)2(H2O)nAsO2(OH)23+ and Fe2(OH)2(H2O)nAsO4+ clusters. The bidentate corner-sharing complex is predicted to be substantially (55 kJ/mole) more favored energetically over the hypothetical edge-sharing bidentate complex. The monodentate corner-sharing (1V) complex is very unstable. We measured EXAFS spectra of 0.3 wt. % (AsO4)3− sorbed to hematite (α-Fe2O3), goethite(α-FeOOH), lepidocrocite(γ-FeOOH) and ferrihydrite and fit the EXAFS directly with multiple scattering. The phase-shift-corrected Fourier transforms of the EXAFS spectra show peaks near 2.85 and 3.26 Å that have been attributed by previous investigators to result from 2E and 2C complexes. However, we show that the peak near 2.85 Å appears to result from As-O-O-As multiple scattering and not from As-Fe backscatter. The observed 3.26 Å As-Fe distance agrees with that predicted for the bidentate corner-sharing surface (2C) complex. We find no evidence for monodentate (1V) complexes; this agrees with the predicted high energies of such complexes.  相似文献   

5.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

6.
Permanganate (MnO4) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO4 (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ∼1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO4 at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (MnII0.19MnIII0.62MnIV0.19)2O3·nH2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation by permanganate under circumneutral pH conditions. Arsenic(III), when it remained in the solution after all of the permanganate was consumed, was effectively oxidized by the solid product. This secondary heterogeneous As(III) oxidation consisted of three steps: sorption to and oxidation on the solid surface and desorption of As(V) into solution, with the first step being the rate-limiting process as observed in As(III) oxidation by various Mn (oxyhydr)oxides reported elsewhere. We also discussed a potential reaction pathway of the permanganate oxidation of As(III).  相似文献   

7.
Natural ferrihydrites (Fh) often contain impurities such as aluminum, especially in acid mine drainage, and these impurities can potentially impact the chemical reactivity of Fh with respect to metal (loid) adsorption. In the present study, we have investigated the influence of aluminum on the sorption properties of ferrihydrite with respect to environmentally relevant aqueous arsenic species, arsenite and arsenate. We have conducted sorption experiments by reacting aqueous As(III) and As(V) with synthetic Al-free and Al-bearing ferrihydrite at pH 6.5. Our results reveal that, when increasing the Al:Fe molar ratio in Fh, the sorption density dramatically decreased for As(III), whereas it increased for As(V). Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy analysis at the As K-edge indicated that the AsIIIO3 pyramid binds to FeO6 octahedra on both Al-free Fh and Al-bearing Fh, by forming bidentate mononuclear edge-sharing (2E) and bidentate binuclear corner-sharing (2C) surface complexes characterized by As–Fe distances of 2.9 Å and 3.4 Å, respectively. The decrease in As(III) sorption density with increasing Al:Fe ratio in Fh could thus be explained by a low affinity of the As(OH)3 molecule for Al surface sites compared to Fe ones. In contrast, on the basis of available literature on As(V) adsorption mechanisms, we suggest that, in addition to inner-sphere 2C arsenate surface complexes, outer-sphere arsenate surface complexes forming hydrogen bonds with both Al–OH and Fe–OH surface sites could explain the enhancement of As(V) sorption onto aluminous Fh relative to Al-free Fh, as observed in the present study. The presence of aluminum in Fh may thus enhance the mobility of arsenite with respect to arsenate in Acid Mine Drainage impacted systems, while mixed Al:Fe systems could present an alternative for arsenic removal from impacted waters, provided that As(III) would be oxidized to As(V).  相似文献   

8.
Migration of uranium and arsenic in aquatic environments is often controlled by sorption on minerals present along the water flow path. To investigate the sorption behaviour, batch experiments were conducted for uranium and arsenic as single components and also solutions containing both uranium and arsenic in the presence of SiO2, Al2O3, TiO2 and FeOOH at a pH ranging from 3 to 9. In solutions containing only U(VI) or As(V) with the minerals, the sorption of U(VI) was low at acidic pH range and increases with increasing pH, whereas As(V) showed opposite sorption behaviour to Al2O3, TiO2 and FeOOH from acidic pH range to alkaline condition. For the As(V)–SiO2 system, the sorption was low for almost all pH. Sorption of U(VI) and As(V) on SiO2 and FeOOH is almost similar in solutions containing either U(VI) or As(V) separately, or both together. In the U(VI)–As(V)–Al2O3 system, a significant retardation in uranyl sorption and an enhancement in arsenate sorption on Al2O3 were observed for a wide range of pH. The sorption behaviour of U(VI) and As(V) was changed when Al2O3 was replaced by TiO2, where an increase in sorption was observed for both elements. The sorption behaviour of uranyl and arsenate in the U(VI)–As(V)–TiO2 system gives evidence for the formation of uranyl–arsenate complexes. The change in sorption retardation/enhancement of U(VI) and As(V) could be explained by the formation of uranyl–arsenate complexes or due to the competitive sorption between uranyl and arsenate species.  相似文献   

9.
Arsenic(V), as the arsenate (AsO4 3?) ion and its conjugate acids, has a strong affinity on Fe, Mn, and Al (oxyhydr)oxides and clay minerals. Removal of arsenate from aqueous solution by poorly crystalline ferrihydrite (hydrous ferric oxide) via a combination of macroscopic (equilibria and kinetics of sorption) and X-ray absorption spectroscopic studies was investigated. The removal of arsenate significantly decreased with increasing pH and sorption maxima of approximately 1.994 mmol/g (0.192 molAs/molFe) were achieved at pH 2.0. The Langmuir isotherm is most appropriate for arsenate sorption over the wide range of pH, indicating that arsenate sorption preferentially takes place at relatively homogenous and monolayer sites rather than heterogeneous and multilayer surfaces. The kinetic study demonstrated that arsenate sorption onto 2-line ferrihydrite is considerably fast, and sorption equilibrium was achieved within the reaction time of 2 h. X-ray absorption near-edge structure spectroscopy indicates no change in oxidation state of arsenate following interaction with the ferrihydrite surfaces. Extended X-ray absorption fine structure spectroscopy supports the efficient removal of arsenate by the 2-line ferrihydrite through the formation of highly stable inner-sphere surface complexes, such as bidentate binuclear corner-sharing (2C) and bidentate mononuclear edge-sharing (2E) complexes.  相似文献   

10.
The mobility and availability of the toxic metalloid selenium in the environment are largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe2+, we investigated the long-term (?1 month) kinetics of selenite sorption to montmorillonite in the presence of Fe2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (X-ray absorption near-edge spectroscopy) and EXAFS (extended X-ray absorption fine-structure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈2 mmol kg−1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of surface H2 species, and are then available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, we derived an average particle size of this precipitate which does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters.  相似文献   

11.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   

12.
The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO4·2H2O), ferric arsenates, arseniosiderite (Ca2Fe3(AsO4)3O2·3H2O), Ca-Fe arsenates, pharmacosiderite (KFe4(AsO4)3(OH)4·6-7H2O), jarosite (K2Fe6(SO4)4(OH)12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%.Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 Å and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides. Correlation of Ca with As in iron (III) oxyhydroxides as determined by electron microprobe analysis supports the coprecipitate origin for the presence of Ca in iron (III) oxyhydroxides.The samples containing higher abundances of ferric arsenates released higher As concentrations during the cyanidation tests. The presence of highly soluble ferric arsenates and Ca-Fe arsenates, and relatively unstable iron (III) oxyhydroxides with Fe/As molar ratios of less than 4 in the ore and process tailings suggests that not only the tailings in the impoundment will continue to release As, but also there is the potential for mobilization of As from the natural sources such as the unmined ore.  相似文献   

13.
The potential for reduction of 99TcO4(aq) to poorly soluble 99TcO2 · nH2O(s) by biogenic sediment-associated Fe(II) was investigated with three Fe(III)-oxide containing subsurface materials and the dissimilatory metal-reducing subsurface bacterium Shewanella putrefaciens CN32. Two of the subsurface materials from the U.S. Department of Energy’s Hanford and Oak Ridge sites contained significant amounts of Mn(III,IV) oxides and net bioreduction of Fe(III) to Fe(II) was not observed until essentially all of the hydroxylamine HCl-extractable Mn was reduced. In anoxic, unreduced sediment or where Mn oxide bioreduction was incomplete, exogenous biogenic TcO2 · nH2O(s) was slowly oxidized over a period of weeks. Subsurface materials that were bioreduced to varying degrees and then pasteurized to eliminate biological activity, reduced TcO4(aq) at rates that generally increased with increasing concentrations of 0.5 N HCl-extractable Fe(II). Two of the sediments showed a common relationship between extractable Fe(II) concentration (in mM) and the first-order reduction rate (in h−1), whereas the third demonstrated a markedly different trend. A combination of chemical extractions and 57Fe Mössbauer spectroscopy were used to characterize the Fe(III) and Fe(II) phases. There was little evidence of the formation of secondary Fe(II) biominerals as a result of bioreduction, suggesting that the reactive forms of Fe(II) were predominantly surface complexes of different forms. The reduction rates of Tc(VII)O4 were slowest in the sediment that contained plentiful layer silicates (illite, vermiculite, and smectite), suggesting that Fe(II) sorption complexes on these phases were least reactive toward pertechnetate. These results suggest that the in situ microbial reduction of sediment-associated Fe(III), either naturally or via redox manipulation, may be effective at immobilizing TcO4(aq) associated with groundwater contaminant plumes.  相似文献   

14.
X-ray absorption fine structure (XAFS) is used to characterize the mineralogy of the iron(III)-arsenate(V) precipitates produced during the raffinate (aqueous effluent) neutralization process at the McClean Lake uranium mill in northern Saskatchewan, Canada. To facilitate the structural characterization of the precipitated solids derived from the neutralized raffinate, a set of reference compounds were synthesized and analyzed. The reference compounds include crystalline scorodite, poorly-crystalline scorodite, iron(III)-arsenate co-precipitates obtained under different pH conditions, and arsenate-adsorbed on goethite. The poorly-crystalline scorodite (prepared at pH 4 with Fe/As = 1) has similar As local structure as that of crystalline scorodite. Both As and Fe K-edge XAFS of poorly-crystalline scorodite yield consistent results on As-Fe (or Fe-As) shell. From As K-edge analysis the As-Fe shell has an inter-atomic distance of 3.33 ± 0.02 Å and coordination number of 3.2; while from Fe K-edge analysis the Fe-As distance and coordination number are 3.31 ± 0.02 Å and 3.8, respectively. These are in contrast with the typical arsenate adsorption on bidentate binuclear sites on goethite surfaces, where the As-Fe distance is 3.26 ± 0.03 Å and coordination number is close to 2. A similar local structure identified in the poorly-crystalline scorodite is also found in co-precipitation solids (Fe(III)/As(V) = 3) when precipitated at the same pH (pH = 4): As-Fe distance 3.30 ± 0.03 Å and coordination number 3.9; while at pH = 8 the co-precipitate has As-Fe distance of 3.27 ± 0.03 Å and coordination number about 2, resembling more closely the adsorption case. The As local structure in the two neutralized raffinate solid series (precipitated at pH values up to 7) closely resembles that in the poorly-crystalline scorodite. All of the raffinate solids have the same As-Fe inter-atomic distance as that in the poorly-crystalline scorodite, and a systematic decrease in the As-Fe coordination is observed when pH is progressively increased; the basic poorly-crystalline scorodite structural feature remains in the raffinate solid up to pH 7.  相似文献   

15.
In solution thermodynamics, and more recently in surface chemistry, it is well established that relationships can be found between the free energies of formation of aqueous or surface metal complexes and thermodynamic properties of the metal ions or ligands. Such systematic dependencies are commonly termed linear free energy relationships (LFER). A 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model has been used to model “in house” and literature sorption edge data for eleven elements: Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) to provide surface complexation constants for the strong sites on montmorillonite. Modelling a further 4 sets of sorption isotherms for Ni(II), Zn(II), Eu(III) and U(VI) provided complexation constants for the weak sites. The protolysis constants and site capacities derived for the 2SPNE SC/CE model in previous work were fixed in all of the calculations. Cation exchange was modelled simultaneously to provide selectivity coefficients. Good correlations between the logarithms of strong SKx−1 and weak W1Kx−1 site binding constants on montmorillonite and the logarithm of the aqueous hydrolysis constants OHKx were found which could be described by the following equations: Strong (≡SSOH) sites:
SlogKX−1=8.1±0.3+(0.90±0.02)logOHKX  相似文献   

16.
The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6-8 solutions was investigated under strictly anoxic conditions using an oxygen trap (<7.5 × 10−9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 μmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05-0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe-X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2·nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2·nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or groundwaters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions.  相似文献   

17.
The interaction of aqueous As(III) with magnetite during its precipitation from aqueous solution at neutral pH has been studied as a function of initial As/Fe ratio. Arsenite is sequestered via surface adsorption and surface precipitation reactions, which in turn influence the crystal growth of magnetite. Sorption samples were characterized using EXAFS spectroscopy at the As K-edge in combination with HRTEM observations, energy dispersive X-ray analysis at the nanoscale, electron energy loss spectroscopy at the Fe L3-edge, and XRD-Rietveld analyses of reaction products. Our results show that As(III) forms predominantly tridentate hexanuclear As(III)O3 complexes (3C), where the As(III)O3 pyramids occupy vacant tetrahedral sites on {1 1 1} surfaces of magnetite particles. This is the first time such a tridentate surface complex has been observed for arsenic. This complex, with a dominant As-Fe distance of 3.53 ± 0.02 Å, occurs in all samples examined except the one with the highest As/Fe ratio (0.33). In addition, at the two highest As/Fe ratios (0.133 and 0.333) arsenite tends to form mononuclear edge-sharing As(III)O3 species (2E) within a highly soluble amorphous As(III)-Fe(III,II)-containing precipitate. At the two lowest As/Fe ratios (0.007 and 0.033), our results indicate the presence of additional As(III) species with a dominant As-Fe distance of 3.30 ± 0.02 Å, for which a possible structural model is proposed. The tridentate 3C As(III)O3 complexes on the {1 1 1} magnetite surface, together with this additional As(III) species, dramatically lower the solubility of arsenite in the anoxic model systems studied. They may thus play an important role in lowering arsenite solubility in putative magnetite-based water treatment processes, as well as in natural iron-rich anoxic media, especially during the reductive dissolution-precipitation of iron minerals in anoxic environments.  相似文献   

18.
X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), X-ray powder diffraction, and Mössbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (γ-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [FeII4FeIII2(OH)12CO3: GR1(CO3)], which completely converted into ferrous-carbonate hydroxide (FeII2(OH)2CO3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occurrence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH)2 phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH)2 nanoparticles as oligomers binding to the edges of Fe(OH)6 octahedra at the edges of the octahedral layers of Fe(OH)2. These multinuclear As(III) surface complexes are characterized by As-As pairs at a distance of 3.32 ± 0.02 Å and by As-Fe pairs at a distance of 3.50 ± 0.02 Å and represent a new type of As(III) surface complex. Chemical analyses show that the majority of As(III) produced in the experiments with As present is associated with iron-bearing hydroxycarbonate or hydroxide solids, reinforcing the idea that, at least under some circumstances, bacterial reduction can promote As(III) sequestration instead of mobilizing it into solution.  相似文献   

19.
Inhalt Die röntgenographisch bestimmten Daten an einem bergfrischen Laumontit mit etwas mehr als drei Molekülen H2O pro Formeleinheit sind a0=14·67±0·15 Å, b0=13·12±0·07 Å, c0=7·52±0·10 Å, =111°36. Das Diffraktionssymbol ist 1 2/m 1 C ... mit den möglichen Raumgruppen C 2-C 2 3 Cm-C s 3 und C 2/m-C 2h 3 . Falls die in der Literatur aufscheinende Angabe der Kristallklasse von Laumontit mit 2/m-C2h als gesichert angesehen werden kann, ist die Raumgruppe C 2/m-C 2h 3 . Nach dem positiven piezoelektrischen Effekt, bestimmt durch D.S. Coombs (1952) ist die Raumgruppe Cm-C s 3 oder C 2-C 2 3 . In der bestimmten Zelle haben vier Formeleinheiten CaAl2Si4O12. 4 H2O Platz.Mit 1 Textabbildung.  相似文献   

20.
Arsenite sorption on troilite (FeS) and pyrite (FeS2)   总被引:4,自引:0,他引:4  
Arsenic is a toxic metalloid whose mobility and availability are largely controlled by sorption on sulfide minerals in anoxic environments. Accordingly, we investigated reactions of As(III) with iron sulfide (FeS) and pyrite (FeS2) as a function of total arsenic concentration, suspension density, sulfide concentration, pH, and ionic strength. Arsenite partitioned strongly on both FeS and FeS2 under a range of conditions and conformed to a Langmuir isotherm at low surface coverages; a calculated site density of near 2.6 and 3.7 sites/nm2 for FeS and FeS2, respectively, was obtained. Arsenite sorbed most strongly at elevated pH (>5 to 6). Although solution data suggested the formation of surface precipitates only at elevated solution concentrations, surface precipitates were identified using X-ray absorption spectroscopy (XAS) at all coverages. Sorbed As was coordinated to both sulfur [d(As-S) = 2.35 Å] and iron [d(As-Fe) = 2.40 Å], characteristic of As coordination in arsenopyrite (FeAsS). The absorption edge of sorbed As was also shifted relative to arsenite and orpiment (As2S3), revealing As(III) reduction and a complete change in As local structure. Arsenic reduction was accompanied by oxidation of both surface S and Fe(II); the FeAsS-like surface precipitate was also susceptible to oxidation, possibly influencing the stability of As sorbed to sulfide minerals in the environment. Sulfide additions inhibit sorption despite the formation of a sulfide phase, suggesting that precipitation of arsenic sulfide is not occurring. Surface precipitation of As on FeS and FeS2 supports the observed correlation of arsenic and pyrite and other iron sulfides in anoxic sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号