首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Remediation of the sites contaminated with organic contaminants, such as chlorobenzenes, remains a challenging issue. Electroosmotic flushing can be a promising approach which is based on mechanism of electrokinetic remediation for removal of organic contaminants from fluids in low‐permeability soil. To select an optimum surfactant that can effectively enhance electroosmotic flushing, three common surfactants, Triton X‐100 (EK2), Tween 80 (EK3), and a mixture of sodium dodecyl sulfate and Triton X‐100 (EK4) buffered with Na2HPO4/NaH2PO4 solution, were tested. The efficiency of each kind of surfactant was evaluated using a three‐dimensional box filled with a clayey soil spiked with 1,2,4‐trichlorobenzene, and compared with a test (EK1) without surfactant. The results demonstrated that the buffer solutions efficiently neutralized H+ and OH? produced by electrolysis. EK3 with Tween 80 added in the flushing solution reached the highest electroosmotic permeability of 10?4 cm2/v/s and achieved a notably high cumulative electroosmotic flow (EOF) of 5067 mL within 6 d, which was 6.3, 3.4, and 4.2 times higher than that in EK1, EK2, and EK4, respectively. There were 420 mL more cumulative EOF obtained after 50 h of electrical application in EK4 than in EK2. The introduction of nonreactive ions can increase the current, thereby benefiting the EOF. Both the higher pH caused by the buffer and the application of nonionic surfactants can make the zeta potential more negative, thereby increasing the EOF. Tween 80 can be recommended as the best flushing solution for removing organic contaminants from sites when electrokinetic remediation is applied.  相似文献   

2.
Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2–Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg−1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ – hydrocarbon solution, and the –OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.  相似文献   

3.
连续测量岩心的流动电势效应和电渗效应,可以获得岩心的动电渗透率,并验证Onsager互易性.通常这两个实验的岩心夹持器需要使用不同的堵头,而更换堵头会导致岩心内流体的参数和边界条件发生变化.本文设计了新的岩心夹持器和激励压力源,避免了在测量过程中更换堵头,提高了两个实验的一致性.本文测量了蒸馏水、以及0.01、0.02、0.05、0.1、0.2、0.4和0.6mol/L氯化钠溶液饱和的10块岩心的流动电势效应和电渗效应,获得了动电渗透率,并验证了低矿化度下的Onsager互易性.结果表明,Onsager互易性在低矿化度下是成立的;对于高矿化度,电渗效应能够取代流动电势效应用于反演渗透率.  相似文献   

4.
To develop P management guidelines for poultry litter application in Oxisols of Brazil, the relationship between water soluble P (WSP), soil test P (STP), and degree of P saturation (DPS) needs to be established. The study examined this relationship in Oxisols of Brazil receiving poultry litter. Soils were analyzed for Mehlich‐1 P (M1‐P), WSP, P fractions, P sorption index (PSI), and P saturation based on Mehlich‐1 extractable P, Al, Fe (DPSM1), and PSI (DPSPSI). Surface water bodies in the catchment area were examined for inorganic and total P. All the surface water bodies in the catchment area of the sampled plots were highly enriched in inorganic and organic P. Enrichment of soil P fractions following poultry litter application followed the order HCl‐bound > NaOH‐bound > NaHCO3‐bound fraction. M1‐P was correlated to labile (NaHCO3‐Pi), and stable P pools (NaOH‐P and HCl‐P) and reflected the cumulative P accumulation in these soils. P saturation indices increased with cumulative P addition and increasing M1‐P. WSP increased with increasing DPS and a change point was noticed at 23% DPSPSI (equivalent to DPSM1 of 16.5%) corresponding to M1‐P of 44.5 mg P kg?1, which could be regarded as threshold for P loss in these soils.  相似文献   

5.
The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A–C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert‐butyl ether, on the other, was investigated. The study was carried out by using a modified GC‐FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 ± 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time‐consuming determination of the BTEX content was no longer necessary.  相似文献   

6.
Ice‐ and snow‐melted water flow over partially thawed frozen soil of cultivated slopes causes serious soil erosion, which results in soil degradation and affects productivity in Northeast China. Water flow velocity over frozen and nonfrozen soil shows importance in understanding meltwater erosion. In this work, a series of laboratory experiments were conducted to measure water flow velocity over frozen and nonfrozen soil slopes. Experiments were performed using the electrolyte trace method under the pulse boundary model, under conditions of 4 slope gradients (5°, 10°, 15°, and 20°), 3 flow rates (1, 2, and 4 L/min), and 7 sensors positioned at 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 m away from the electrolyte injection point. Results showed that velocities over frozen soil slopes increased with flow rate and slope gradient. Flow velocities over nonfrozen soil slopes increased with flow rate and slope gradients from 5° to 15° and stabilized at 15°. Flow velocities over frozen soil slopes were 30%, 54%, 71%, and 91% higher than those over nonfrozen ones at slope gradients of 5°, 10°, 15°, and 20°. Flow velocities over frozen soil slopes under different flow rates of 1, 2, and 4 L/min were approximately 52%, 59%, and 79% higher than those over nonfrozen soil, respectively. This study can help in assessing the erosion of partially thawed frozen soil by meltwater flow.  相似文献   

7.
油田开发过程中的动电现象研究   总被引:3,自引:1,他引:2       下载免费PDF全文
动电现象是油气田注水开发过程中因油藏环境变化而引起的一种特殊的地球物理现象.本文依据多孔介质中的双电层模型及动电理论,对油气田开发过程中的动电现象进行研究,提出陆相非均质复杂构造油气藏开发过程中压力异常、地层水淡化及多相流动是动电现象产生的主要原因,流动电流的形成不仅使老区新钻井的自然电位曲线发生畸变,表现为平直及正异常现象,还导致水淹层的电阻率升高,严重干扰已动用层的评价工作.  相似文献   

8.
A field tracer test was carried out in a light nonaqueous phase liquid (LNAPL) source zone using a well pattern consisting of one injection well surrounded by four extraction wells (5‐spot well pattern). Multilevel sampling was carried out in two observation wells located inside the test cell characterized by heterogeneous lithology. Tracer breakthrough curves showed relatively uniform flow within soil layers. A numerical flow and solute transport model was calibrated on hydraulic heads and tracer breakthrough curves. The model was used to estimate an average accessible porosity of 0.115 for the swept zone and an average longitudinal dispersivity of 0.55 m. The model was further used to optimize the relative effects of viscous forces versus capillary forces under realistic imposed hydraulic gradients and to establish optimal surfactant solution properties. Maximum capillary number (NCa) values between injection and extraction wells were obtained for an injection flow rate of 16 L/min, a total extraction flow rate of 20 L/min, and a surfactant solution with a viscosity of 0.005 Pa?s. The unconfined nature of the aquifer limited further flow rate or viscosity increases that would have led to unrealistic hydraulic gradients. An NCa range of 3.8 × 10?4 to 7.6 × 10?3 was obtained depending on the magnitude of the simulated LNAPL‐water interfacial tension reduction. Finally, surfactant and chase water slug sizing was optimized with a radial form of the simplified Ogata‐Banks analytical solution (Ogata and Banks 1961) so that injected concentrations could be maintained in the entire 5‐spot cell.  相似文献   

9.
10.
基于动电效应的岩芯渗透率实验测量   总被引:8,自引:5,他引:3       下载免费PDF全文
根据孔隙介质的动电耦合理论设计了一套岩芯渗透率测量系统.实验采用交流锁相放大技术,在低频12~42 Hz范围内完成了砂岩岩样流动电势和电渗实验,得到了流动电势系数KS和电渗压力系数KE,进而计算出岩样动电渗透率,对于中、高渗透率岩样,测量得出的动电渗透率与常规气测渗透率差异较小,两者具有很好的相关性.实验表明,动电测量可作为岩样渗透率测量的一种方法,同时揭示了利用地层动电测井信号反演地层参数的可能性,实验结果对于分析天然地震动电效应也有参考意义.  相似文献   

11.
Nonaqueous phase liquid (NAPL)‐impacted lower permeability layers in heterogeneous media are difficult to fully remediate and can act as persistent sources of groundwater contamination through diffusive emissions to transmissive aquifer zones. This work investigated the benefits of partial remediation involving treatment focused near the high‐low permeability interface, with the performance metric being emissions reduction. A sequential base‐activated persulfate (S2O8 2?) delivery treatment strategy was studied in this work, involving 13–14 d deliveries of 10% w/w sodium persulfate (Na2S2O8) and 14–28 d deliveries of 19 g/L sodium hydroxide (NaOH). Treatment and control experiments were conducted in 1.2‐m wide × 1.2‐m tall × 5‐cm thick physical model tanks containing two soil layers differing in hydraulic conductivity by three orders of magnitude. The top 10 cm of the lower permeability layers contained 7400–7800 mg‐NAPL/kg‐soil; the NAPL was comprised of benzene, toluene, ethylbenzene, p‐xylene, o‐xylene, n‐propylbenzene, and 1,3,5‐trimethylbenzene (TMB) mixed in octane. Approximately 0.1 g‐Na2S2O8 was delivered per cm2‐interface area over 13–14 d. The S2O8 2? and SO4 2? concentration profiles suggest higher oxidant reaction rates when NaOH is delivered prior to, rather than after Na2S2O8. After 264 d and two treatments, hydrocarbon emissions from the NAPL source were reduced by 60% to 73% compared to a no‐treatment control tank. The incremental benefit of the second treatment was only about 10% of the effect of the first treatment.  相似文献   

12.
Gallium arsenide (GaAs) has both high saturated electron velocity and high electron mobility, making it useful as a semiconductor material in a variety of applications, including light‐emitting diodes (LEDs), integrated circuits (ICs), and microwave appliances. A side effect of the use of gallium (Ga) is the production of a relatively large amount of hazardous waste. This study aimed at the recovery of Ga and arsenic (As) from GaAs waste using hydrometallurgical methods involving leaching and coagulation and a dry annealing process that involves annealing, vacuum separation, and sublimation by heating. Our research has shown that GaAs can be leached using nitric acid (HNO3) to obtain 100% Ga and As with a leaching solution at pH 0.1, with subsequent adjustment of the leaching solution to pH 3 with sodium hydroxide (NaOH). Another method used a leaching solution at pH 2, then adjusting to pH 11 using NaOH. Ferric hydroxide (FeO(OH)) was added at 90°C after NaOH was added to the leaching solution. At pH 2 and 11, 55.5 and 21.9% of the As could be removed from the hazardous waste, respectively. The Ga could also be precipitated. When GaAs powder was heated to 1000°C over 3 h, 100% As removal was achieved, and 92.6% of the Ga was removed by formation of 99.9% gallium trioxide (Ga2O3). Arsenic was vaporized when the temperature was elevated to 1000°C, allowing arsenic trioxide (As2O3) to condense with 99.2% purity. The Ga2O3 powder produced was then dissolved and electrolyzed, allowing for 95.9% recovery of Ga with a purity of 99.9%.  相似文献   

13.
Groundwater monitoring wells are present at most hydrocarbon release sites that are being assessed for cleanup. If screened across the vadose zone, these wells provide an opportunity to collect vapor samples that can be used in the evaluation of vapor movement and biodegradation processes occurring at such sites. This paper presents a low purge volume method (modified after that developed by the U.S. EPA) for sampling vapor from monitoring wells that is easy to implement and can provide an assessment of the soil gas total petroleum hydrocarbon (TPH) and O2 concentrations at the base of the vadose zone. As a result, the small purge method allows for sampling of vapor from monitoring wells to support petroleum vapor intrusion (PVI) risk assessment. The small purge volume method was field tested at the Hal's service station site in Green River, Utah. This site is well‐known for numerous soil gas measurements containing high O2 and high TPH vapor concentrations in the same samples which is inconsistent with well‐accepted biodegradation models for the vapor pathway. Using the low purge volume method, monitoring wells were sampled over, upgradient, and downgradient of the light nonaqueous phase liquid (LNAPL) footprint. Results from our testing at Hal's show that vapor from monitoring wells over LNAPL contained very low O2 and high TPH concentrations. In contrast, vapor from monitoring wells not over LNAPL contained high O2 and low TPH concentrations. The results of this study show that a low purge volume method is consistent with biodegradation models especially for sampling at sites where low permeability soils exist in and around a LNAPL source zone.  相似文献   

14.
Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL−1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL−1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.  相似文献   

15.
Pesticide sorption on to the soil has a significant role in deciding the fate and behavior of pesticides in soil and aquatic environment. The present study investigates the adsorption of monocrotophos (MCP) and dichlorvos (DDVP) on the three soils of Malwa region of Punjab, India under different conditions. Batch adsorption experiments were preformed in replicates using 2 g of air‐dried soil and varying concentrations of pesticides and 20 mL of 0.01 M CaCl2 as background electrolyte. The results revealed high adsorption of MCP and DDVP in soil B with kf‐values 0.1261 and 0.0498 and n‐values 2.7345 and 1.831, respectively. The adsorption isotherms obtained were analyzed and the data was subjected to classical Langmuir, Freundlich, and Temkin models. The experimental data best fitted to the logarithm form of Freundlich and Temkin model. Kinetics analyses were performed using pseudo‐first order, pseudo‐second order, and intraparticle diffusion models. The regression results showed that the experimental data fitted very well with the pseudo‐second order kinetic model as correlation coefficient value is very closer to 1 and also followed the intraparticle diffusion model, whereas, diffusion is not only the rate controlling step. The percentages desorption with tap and distilled water is 32–64% for MCP and 25–48% for DDVP.  相似文献   

16.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   

17.
In this study, we used an archive of borehole logs from the British Geological Survey to collect information on the spatial structure of weathering that extends from the surface to competent bedrock across the Triassic Sherwood Sandstone Group outcrop (750 km2), in the East Midlands, UK. The borehole logs were used to estimate the thickness of the soil (n = 280) and soil and saprolite (S&S) to competent rock (n = 500). The weathering profile of the sandstone consisted of soil (median thickness ~ 1·5 m) overlying a transition zone of compacted and weakly cemented weathered sandstone saprolite over bedrock. Topographic analysis using a NEXTMAP 5 m × 5 m digital elevation model (DEM) revealed no significant relationships between slope properties (relief, flow length, flow accumulation or slope angle) and soil or S&S thickness. A weak, but statistically significant correlation was found between the thickness of the soil and S&S (rs = 0·25, p < 0·001, n = 192). The variation in soil thickness may be related to changes in current and historic and land‐use, variation in sandstone properties and the influence of glacial/peri‐glacial processes. The thickness of the saprolite was more variable towards the southern part of the study area, where it increased to a maximum 40 m. We hypothesize and provide evidence that the greater weathering thickness is related to the occurrence of increased faulting in this part of the study region, allowing increased access to meteoric waters. A possible source of increased water supply is meltwater from Quaternary ice sheets; the overburden of ice may have increased sub‐glacial pore water pressure, with the fractures and faults acting as a drainage system for the removal of dissolved weathering products. British Geological Survey © NERC 2010  相似文献   

18.
Surfactant enhanced soil washing (SESW) was applied to an industrial contaminated soil. A preliminary characterization of the soil regarding the alkaline-earth metals, Na, K, Ca and Mg took values of 2866, 2036, 2783 and 4149 mg/kg. The heavy metals As, Cd, Cu, Pb, Ni and Zn, had values of 4019, 14, 35582, 70, 2603, and 261 mg/kg, respectively. When using different surfactants, high removal of Cu, Ni and Zn were found, and medium removals for Pb, As and Cd. In the case of these three metals, tap water removed more than the surfactant solutions, except for the case of As.There were surfactants with average removals (this is, the removal for all the metals studied) of 67.1% (Tween 80), 64.9% (Surfacpol 14104) and 61.2% (Emulgin W600). There were exceptional removals using Texapon N-40 (83.2%, 82.8% and 86.6% for Cu, Ni and Zn), Tween 80 (85.9, 85.4 and 81.5 for Cd, Zn and Cu), Polafix CAPB (79%, 83.2% and 49.7% for Ni, Zn and As). The worst results were obtained with POLAFIX LO with a global removal of 45%, well below of the average removal with tap water (50.2%).All removal efficiencies are reported for a one step washing using 0.5% surfactant solutions, except for the case of mezquite gum, where a 0.1% solution was employed.  相似文献   

19.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
We present transient streaming potential data collected during falling‐head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl) of the sand samples. A semi‐empirical model based on the falling‐head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl. The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling‐head permeameter tests can be used to estimate both K and Cl. They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号