首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
What hydraulic information can be gained from remotely sensed observations of a river's surface? In this study, we analyze the relationship between river bed undulations and water surfaces for an ungauged reach of the Xingu River, a first‐order tributary of the Amazon river. This braided reach is crosscut more than 10 times by a ENVISAT (ENVironmental SATellite) track that extends over 100 km. Rating curves based on a modeled discharge series and altimetric measurements are used, including the zero‐flow depth Z 0 parameter, which describes river's bathymetry. River widths are determined from JERS (Japanese Earth Ressources Satellite) images. Hydrodynamic laws predict that irregularities in the geometry of a river bed produce spatial and temporal variations in the water level, as well as in its slope. Observation of these changes is a goal of the Surface Water and Ocean Topography satellite mission, which has a final objective of determining river discharge. First, the concept of hydraulic visibility is introduced, and the seasonality of water surface slope is highlighted along with different flow regimes and reach behaviors. Then, we propose a new single‐thread effective hydraulic approach for modeling braided rivers flows, based on the observation scales of current satellite altimetry. The effective hydraulic model is able to reproduce water surface elevations derived by satellite altimetry, and it shows that hydrodynamical signatures are more visible in areas where the river bed morphology varies significantly and for reaches with strong downstream control. The results of this study suggest that longitudinal variations of the slope might be an interesting criteria for the analysis of river segmentation into elementary reaches for the Surface Water Ocean Topography mission that will provide continuous measurements of the water surface elevations, the slopes, and the reach widths.  相似文献   

2.
Mainstem–floodplain material exchange in the tidal freshwater reach of major rivers may lead to significant sequestration of riverine sediment, but this zone remains understudied compared to adjacent fluvial and marine environments. This knowledge gap prompts investigation of floodplain-incising tidal channels found along the banks of tidal rivers and their role in facilitating water and suspended-sediment fluxes between mainstem and floodplain. To evaluate this role, and how it evolves along the tidal river and with time, we measured water level, flow velocity, temperature, and suspended-sediment concentration (SSC) in four tidal channels along the tidal Amazon River, Brazil. Eleven deployments were made during low, rising, high, and falling seasonal Amazon discharge. Generally, channels export high-SSC water from the mainstem to the tidal floodplain on flood tides and transfer low-SSC water back to the mainstem on ebbs. Along the length of the tidal river, the interaction between tidal and seasonal water-level variations and channel–floodplain morphology is a primary control on tidal-channel sediment dynamics. Close to the river mouth, where tides are large, this interaction produces transient flow features and current-induced sediment resuspension, but the importance of these processes decreases with distance upstream. Although the magnitude of the exchange of water and sediment between mainstem and floodplain via tidal channels is a small percentage of the total mainstem discharge in this large tidal-river system, tidal channels are important conduits for material flux between these two environments. This flux is critical to resisting floodplain submergence during times of rising sea level. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River-bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (\(0.25^\circ \,\times \,0.25^\circ\)) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.  相似文献   

5.
This paper investigates the interplay of the hydrogeological characteristics, soil properties and recent land reclamation projects on the distribution of waterlogging and salinization within the Farafra Oasis. The multi‐temporal remote sensing data and field observations show that new reclaimed areas have been recently cultivated in distant areas from the old agricultural land. These new cultivations have developed widespread waterlogging, seepage channels and soil salinization. Analyses of the Shuttle Radar Topography Mission digital elevation model (DEM) showed that both old and new agricultural areas are located within same closed drainage basin. The fluvial channels of these catchments, which were developed during wet climatic pluvial, have largely been obliterated by the prevailing aridity and often buried under aeolian deposits. However, the new cultivations have been developed on the fingertips of these fluvial channels, while the old fields occupy the low‐level playas. The soil of the new cultivated areas is mainly lithic with a high calcium carbonate content, thus limiting the downward percolation of excess irrigation water and therefore developing perched water table and seepage through the palaeo‐channels. The automatically extracted drainage networks from DEM resemble fluvial patterns and coincide with the seepage channels slowly heading toward old cultivation. The inactive alluvial channels and landforms have to be considered when planning for new cultivation in dryland catchments to better control waterlogging and salinization hazard. It is highly recommended that newly developed seepage channels have to be detected and intercepted before reaching old agriculture areas. Therefore, the ‘dry‐drainage’ concept can be implemented as the seepage water can be conveyed into nearby playas reserved for evaporation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based on the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based on kinematic and diffusion wave methodologies. The WBM is driven by satellite‐derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1, 000 to < 4·7M km2). For the period of study, results suggest basin‐wide total water storage changes in the Amazon vary by approximately + /? 5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by + /? 2·5 cm is likely due to 0·5 to 1 month variability in the arrival of significant rainfall periods throughout the basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the impacts of new river geomorphic and flow parameterizations on the simulated surface waters dynamics of the Amazon River basin. Three major improvements to a hydrologic model are presented: (1) the river flow velocity equation is expanded to be dependent on river sinuosity and friction in addition to gradient forces; (2) equations defining the morphological characteristics of the river, such as river height, width and bankfull volume, are derived from 31 622 measurements of river morphology and applied within the model; (3) 1 km resolution topographic data from the Shuttle Radar Topography Mission (SRTM) are used to provide physically based fractional flooding of grid cells from a statistical representation of sub‐grid‐scale floodplain morphology. The discharge and floodplain inundation of the Amazon River is simulated for the period 1968–1998, validated against observations, and compared with results from a previous version of the model. These modifications result in considerable improvement in the simulations of the hydrological features of the Amazon River system. The major impact is that the average wet‐season flooded area on the Amazon mainstem for the period 1983–1988 is now within 5% of satellite‐derived estimates of flooded area, whereas the previous model overestimates the flooded area by about 80%. The improvements are a consequence of the new empirical river geomorphologic functions and the SRTM topography. The new formulation of the flow velocity equation results in increased river velocity on the mainstem and major tributaries and a better correlation between the mean monthly simulated and observed discharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   

10.
The upper reach of the Amazon River has a very dynamic morphology, with the highest rates of migration observed in the entire Amazon River. It has an anabranching channel pattern which alternates between a condition of single channel and anabranching structures; in particular, the anabranching structure near Iquitos City shows an interesting channel behavior. Its channels migrate at different rates, where there are processes of narrowing and widening, and also collision and development of new channels. The temporal evolution of the Iquitos anabranching structure is described during the period from 1985 to 2014. The study is carried out by using satellite images to track the migration patterns, which are contrasted to the underlying geological units in the valley. Bathymetry of the structure and several velocity transects were obtained during a field campaign prior to the 2012 historic flood event. This information allowed for numerical modeling in order to compute the hydrodynamic flow field that complements the temporal analysis, aiming to understand the planform migration patterns after the 2012 flood event. It is observed that the geological units play an important role in modulating the migration rates and planform development of the channels. The channels in the structure are in contention to be the main channel, which become the secondary channel after migration. This causes the channels to experience a rise in bed elevation and narrowing of the channel itself; if this trend continues for several more years, these channels will detach from the Iquitos anabranching structure, thus forming paleo‐channels. This geomorphic process is important for horizontal and vertical soil heterogeneity along the floodplain. In general, the analysis shows a complex interaction between the underlying geological units, flow structure, morphology of the bed and planform migration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This research builds on the concept of hydraulic geometry and presents a methodology for estimating bankfull discharge and the hydraulic geometry coefficients and exponents for a station using limited data; only stage‐discharge and Landsat imagery. The approach is implemented using 82 streamflow gauging locations in the Amazon Basin. Using the estimated values for the hydraulic geometry relations, bankfull discharge, discharge data above bankfull and upstream drainage area at each site, relationships for estimating channel and floodplain characteristics as a function of drainage area are developed. Specifically, this research provides relationships for estimating bankfull discharge, bankfull depth, bankfull width, and floodplain width as a function of upstream drainage area in the Amazon Basin intended for providing reasonable cross‐section estimates for large scale hydraulic routing models. The derived relationships are also combined with a high resolution drainage network to develop relationships for estimating cumulative upstream channel lengths and surface areas as a function of the specified minimum channel width ranging from 2 m to 1 km (i.e. threshold drainage areas ranging from 1 to 431,000 km2). At the finest resolution (i.e. all channels greater than 2 m or a threshold area of 1 km2), the Amazon Basin contains approximately 4.4 million kilometers of channels with a combined surface area of 59,700 km2. The intended use of these relationships is for partitioning total floodable area (channels versus lakes and floodplain lakes) obtained from remote sensing for biogeochemical applications (e.g. quantifying CO2 evasion in the Amazon Basin). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

13.
Stream power can be an extremely useful index of fluvial sediment transport, channel pattern, river channel erosion and riparian habitat development. However, most previous studies of downstream changes in stream power have relied on field measurements at selected cross‐sections, which are time consuming, and typically based on limited data, which cannot fully represent important spatial variations in stream power. We present here, therefore, a novel methodology we call CAFES (combined automated flood, elevation and stream power), to quantify downstream change in river flood power, based on integrating in a GIS framework Flood Estimation Handbook systems with the 5 m grid NEXTMap Britain digital elevation model derived from IFSAR (interferometric synthetic aperture radar). This provides a useful modelling platform to quantify at unprecedented resolution longitudinal distributions of flood discharge, elevation, floodplain slope and flood power at reach and basin scales. Values can be resolved to a 50 m grid. CAFES approaches have distinct advantages over current methodologies for reach‐ and basin‐scale stream power assessments and therefore for the interpretation and prediction of fluvial processes. The methodology has significant international applicability for understanding basin‐scale hydraulics, sediment transport, erosion and sedimentation processes and river basin management. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite‐derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modelling. We observed gradients in water surface elevation between neighbouring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to ‘fill‐and‐spill’ over topographic depressions (surface sills), as we observed for the Twelvemile‐Buddy Lake pair following a May 2013 ice‐jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill‐and‐spill) to shallow groundwater flow (‘fill‐and‐seep’). Such a shift is possible in the next several hundred years of ground surface warming and may bring about more synchronous water level changes between neighbouring lakes following large flood events. This relationship offers a potentially useful tool, well suited to remote sensing, for identifying long‐term changes in shallow groundwater flow resulting from thawing of permafrost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Accommodation space in the unconfined distal part of low‐gradient fluvial fans facilitates abundant floodplain deposition. Here, the development of crevasse splays plays a key role in the aggradation of alluvial ridges and subsequent river avulsion. This study presents an analysis of different stages in the evolution of crevasse splays based on observations made in the modern‐day Río Colorado dryland fluvial fan fringing the endorheic Altiplano Basin in Bolivia. A generic life cycle is proposed in which crevasse‐splay channels adjust towards a graded equilibrium profile with their lower‐lying distal termini acting as a local base level. Initial development is dominantly controlled by the outflow of floodwater, promoting erosion near the crevasse apex and deposition towards the splay fringes. When proximal incision advances to below the maximum level of floodplain inundation, return flow occurs during the waning stage of flooding. This floodwater reflux leads to a temporary repositioning of the local base level to the deeper trunk‐channel thalweg at the apex of the crevasse‐splay channels. The resultant decrease in the floodplainward gradient of these channels ultimately leads to backfilling and abandonment of the crevasse splay, leaving a subtle local elevation of the floodplain. Consecutive splays form an alluvial ridge through lateral amalgamation and subsequent vertical stacking, which is mirrored by the aggradation of their parent channel floor. As this alluvial ridge becomes increasingly perched above the surrounding floodplain, splay equilibration may cause incision of the levee crevasse down to or below its trunk channel thalweg, leading to an avulsion. The mechanisms proposed in this study are relevant to fluvial settings promoting progradational avulsions. The relatively rapid accumulation rate and high preservation potential of crevasse splays in this setting makes them an important constituent of the resultant fluvial stratigraphy, amongst which are hydrocarbon‐bearing successions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Supraglacial channels are an important mechanism for surface water transport over the ablation zone of western Greenland. The first assessment of the spatio‐temporal distribution of surface melt channels and their relationship to supraglacial lakes over the Jakobshavn Isbræ region of Western Greenland was analysed using Landsat Enhanced Thematic Mapper Plus panchromatic images during the 2007 melt season. A total of 1188 melt channels were delineated and show an increase in the number of melt channels throughout the season, reaching a peak on 9 August. Water‐filled melt channels advanced to a maximum elevation of 1647 m on 9 August and attained a minimum average slope of 0.009 on 8 July. The ablation zone demonstrates two hydrologic modes, where crevasse and moulin terminating channels dominate at elevations <800 m and higher‐order channel networks >800 m. Development of higher‐order networks is interrupted by flow divergence due to partitioning of melt water into vertical infiltration through moulins and crevasse fields prevalent at lower elevations. Tributary and connector networks between 800 and 1200 m in elevation are correlated with fewer lake occurrences, lower surface velocities (~50 m a?1), and ice flow dominated by internal deformation over basal sliding. High‐order channels are associated with lake basins that exceed melt water storage capacity. Evolution of channel networks is coupled to changes in melt water production, runoff, and ice dynamics with implication for the englacial and subglacial environments. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons, Ltd.  相似文献   

17.
In the Amazon basin, floodplains form a complex mosaic of freshwater systems with differing morphologies, resulting in varied inundation patterns and heterogeneous chemical and ecological characteristics. In this study, we focused on the Janauacá floodplain, a medium‐sized system (786 km2, including the local watershed) located along the Solimões River. Based on in situ and satellite observations acquired from November 2006 to November 2011, we computed water fluxes between the mainstream and the floodplain and examined the temporal dynamics of floodplain storage from river flooding, rainfall, runoff, and exchanges with groundwater through bank seepage for the 5 years from 2006 to 2011. The mainstream was the main input of water to the flooded area, accounting on average for 93% of total water inputs by the end of the water year. Direct precipitation and runoff from uplands contributed less than or equal to 5% and 10%, respectively. The seepage contribution was less than 1%. Model uncertainties, evaluated using Monte Carlo analysis of the input data and model parameters, showed that all water fluxes were relatively well constrained except for outflow through seepage, which had a standard deviation across simulations greater than 60%. The water balance computation was verified using electrical conductivity as an assumed non‐reactive tracer. Except during periods of very low water, the simulated and measured conductivities agreed well. Moreover, conductivity data analysis confirmed that the Janauacá system can be considered homogeneous in terms of electrical conductivity for filling percentages equal to or greater than 40% (i.e., when the water level is above 19.5 m, generally from April to August) but presented large heterogeneities during the rest of the hydrological cycle.  相似文献   

18.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号