首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Dissolved major ions, Sr concentrations and 87Sr/86Sr ratios of 10 coastal lakes from the Larsemann Hills, East Antarctica have been studied to constrain their solute sources, transport and glacial weathering patterns in their catchments. In absence of perennial river/streams, lakes serve as only reliable archive to study land surface processes in these low-temperature regions. The lake water chemistry is mostly Na-Cl type and it does not show any significant depth variations. Sr isotope compositions of these lakes vary from 0.7110 to 0.7211 with an average value of 0.7145, which is higher than modern seawater value. In addition to oceanic sources, major ions and Sr isotopic data show appreciable amount of solute supply from chemical weathering of silicate rocks in lake catchments and dissolution of Ca-Mg rich salts produced during the freezing of seawaters. The role of sulphide oxidation and carbonate weathering are found to be minimal on lake hydro-chemistry in this part of Antarctica. Inverse model calculations using this chemical dataset provide first-order estimates of dissolved cations and Sr; they are mostly derived from oceanic (seawater + snow) sources (cations approximately 76%) and (Sr approximately 92%) with minimal supplies from weathering of silicates (cations approximately 15%); (Sr approximately 2%) and Ca-rich minerals (cations approximately 9%); (Sr approximately 7%). The silicate weathering rate and its corresponding atmospheric CO2 consumption rate estimates for Scandrett lake catchment (3.6 ± 0.3 tons/km2/year and 0.5 × 105 moles/km2/year), are lower than that of reported values for the average global river basins (5.4 tons/km2/year and 0.9 × 105 tons/km2/year) respectively. The present study provides a comprehensive report of chemical weathering intensity and its role in atmospheric CO2 consumption in low-temperature pristine environment of Antarctica. These estimates underscore the importance of Antarctica weathering on atmospheric CO2 budget, particularly during the past warmer periods when the large area was exposed and available for intense chemical weathering.  相似文献   

2.
青海湖水量平衡及水位变化预测   总被引:17,自引:5,他引:12  
曲耀光 《湖泊科学》1994,6(4):298-307
青海湖是我国最大的内陆湖泊,流域面积29661km~(2),水面高程超过3000m,受人为活动影响相对较少,基本上还处于半自然状态。水量平衡计算结果表明,有观测资料的近30年来,青海湖处于负平蘅状态,水位下降了2.96m,平均每年下降10.2cm。如果未来湖区的气候大体保持过去的情况,水位将再下降5.8m,经过57年才能平衡。如果考虑“温室效应”所引起的西北地区未来气候变化,水位亦将下降,每年平均下降10.1cm。  相似文献   

3.
Stable water isotopes (δ18O and δ2H) are an important source signature for understanding the hydrological cycle and altered climate regimes. However, the mechanisms underlying atmospheric water vapour isotopes in the northeast Qinghai‐Tibetan Plateau of central Asia remain poorly understood. This study initially investigated water vapour isotopic composition and its controls during the premonsoon and monsoon seasons. Isotopic compositions of water vapour and precipitation exhibited high variability across seasons, with the most negative average δ18O values of precipitation and the most positive δ18O values of water vapour found during the premonsoon periods. Temperature effect was significant during the premonsoon period but not the monsoon period. Both a higher slope and intercept of the local meteoric water line were found during the monsoon period as compared with in the premonsoon period, suggesting that raindrops have been experienced a greater kinetic fractionation process such as reevaporation below the cloud during the premonsoon periods. The δ2H and δ18O signatures in atmospheric water vapour tended to be depleted with the occurrence of precipitation events especially during the monsoon period and probably as a result of rainout processes. The monthly average contribution of evaporation from the lake to local precipitation was 35.2%. High d‐excess values of water vapour were influenced by the high proportion of local moisture mixing, as indicated by the gradually increasing relative humidity along westerly and Asian monsoon trajectories. The daily observation (observed ε) showed deviations from the equilibrium fractionation factors (calculated ε), implying that raindrops experienced substantial evaporative enrichment during their descent. The average fraction of raindrops reevaporation was estimated to be 16.4± 12.9%. These findings provide useful insights for understanding the interaction between water vapour and precipitation, moisture sources, and help in reconstructing the paleoclimate in the alpine regions.  相似文献   

4.
青海湖水位下降与趋势预测   总被引:4,自引:2,他引:4  
青海湖是我国最大的内陆半咸水湖,近百年来,特别是有水文记录的30多年来,湖水位持续下降,已引起各有关方面的关注。本文根据水量平衡原理,对湖水位下降的原因进行了探讨:1.青海湖水位差与入湖补给量、耗水量关系密切,其复相关系效高达0.95;2.青海湖多年平均亏水量为4.5×10~8m~3,累积亏水量与湖水位变化趋势完全一致;3.在总耗水量中,人为耗水仅占1%左右。因此,湖水位下降的主要原因是自然因素。此外,本文利用相关分析法,灰色系统、叠加模型,分别对湖水位进行了预测,结果表明相关分析和叠加模型效果较好,1989年实测值与预测值较为接近。最后对未来湖水位下降的极限做了探讨。  相似文献   

5.
人类活动对青海湖水位下降的影响   总被引:17,自引:6,他引:11  
青海湖是我国最大的内陆湖泊,位于青藏高原的东北隅。近三十年来由于自然要素和人为活动的影响,湖周生态环境急剧退化,湖水位下降达3.35m,湖面收缩约300多km~2。根据调查研究以及其他方面的资料。青海湖多年平均亏水量4.36×10~8m~3,而人为活动耗水量占亏水量的8.7%。仅占湖面蒸发量的1%。所以,人为耗水与湖水位波动无明显相关,湖水位下降虽然是综合效应,但主导因素是气候变化,并导致湖周生态环境的恶化。  相似文献   

6.
1974-2016年青海湖水面面积变化遥感监测   总被引:4,自引:2,他引:4  
位于青藏高原东北部的青海湖是我国最大的咸水湖和内陆湖,也是青藏高原东北部的重要水汽源,青海湖面积的动态变化是气候和周围生态环境状况的重要体现.本研究利用长时间序列中分辨率遥感影像数据,通过人工提取湖岸水涯线信息对青海湖水面面积进行监测.结果显示:1974-2016年期间,青海湖面积总体上呈先减后增的变化趋势.2004年水面积最小,为4223.73 km2,比1974年减少253.80 km2.其中1974-1987年期间面积骤减;2000 2009年期间青海湖水面面积变化幅度相对较小,平均变化幅度为6.85 km2.2009-2016年7 a间,水面面积增加了128.27 km2.2012年青海湖面积骤增,比2011年8月同期增加65.12 km2;同年6月和9月的面积变化为2002-2016年最大,达到59.18 km2.湖东岸沙岛的湖岸线变化最为显著,1974-2004年岸线后退最大距离达4.59 km,2012年的年内最大变化距离为0.39 km.青海湖流域内降水补给增加,生态环境治理措施促使入湖河流径流量增大,是近年来湖水面积增加的主要原因.  相似文献   

7.
ABSTRACT

With global climate change and impacts of human activity, the water cycle, which has a close relationship with local water resources, has changed rapidly. Based on different greenhouse gas emission scenarios, five relatively independent global climate models are selected from 47 CMIP5 models to simulate future climatic conditions. Data are downscaled to the local projection, with bias neutralized before applying them to the hydrological models, by which availability of future water resources are calculated for the Dongting Lake basin. The results show that the water resources of the Dongting Lake basin are likely to increase in the future, but be distributed more unevenly. All scenarios indicate that water availability will increase during the flood season and decrease during the dry season, with a prominent increase in annual discharge. The scenarios also predict that the greater the greenhouse gas emissions, the more uneven the water distribution becomes. Overall, the water resources of the Dongting Lake catchment show the same increasing and unevenly distributed trend in the future, which could be further accelerated by human activities.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang  相似文献   

8.
青海湖西岸镭同位素的解吸和扩散特征   总被引:2,自引:2,他引:0  
对青海湖布哈河河口悬浮颗粒物、底部沉积物和青海湖湖底沉积物中的镭(Ra)同位素进行不同盐度和pH值的解吸实验以及扩散实验,得到不同盐度湖水(2.8‰、5.8‰、8.8‰、11.8‰和14.8‰)对悬浮颗粒物中镭的解吸活度,和不同时间段沉积物中镭同位素的扩散速率,探讨盐度、pH值与颗粒物中镭同位素解吸的关系.结果表明,224Ra的解吸活度均高于~(226)Ra和~(228)Ra的解吸活度;在盐度为12‰附近时布哈河河口悬浮颗粒物中223Ra、~(226)Ra和~(228)Ra的解吸程度达到最大值,当盐度9‰时,~(226)Ra解吸活度大于~(228)Ra,当盐度9‰时,~(228)Ra的解吸活度大于~(226)Ra,这可能与当地岩石中富铀矿有关.河流沉积物~(226)Ra和~(228)Ra的扩散速率分别是0.039和0.290 dpm/(m~2·h);湖底沉积物~(226)Ra和~(228)Ra的扩散速率分别为0.018和0.092 dpm/(m~2·h),湖底沉积物扩散速率小于河流沉积物扩散速率.  相似文献   

9.
Although catchment storage is an intrinsic control on the rainfall–runoff response of streams, direct measurement remains a major challenge. Coupled models that integrate long‐term hydrometric and isotope tracer data are useful tools that can provide insights into the dynamics of catchment storage and the volumes of water involved. In this study, we use a tracer‐aided hydrological model to characterize catchment storage as a dynamic control on system function related to streamflow generation, which also allows direct estimation of the nonstationarity of water ages. We show that in a wet Scottish upland catchment dominated by runoff generation from riparian peats (histosols) with high water storage, nonstationarity in water age distributions is only clearly detectable during more extreme wet and dry periods. This is explained by the frequency and longevity of hydrological connectivity and the associated relative importance of flow paths contributing younger or older waters to the stream. Generally, these saturated riparian soils represent large mixing zones that buffer the time variance of water age and integrate catchment‐scale partial mixing processes. Although storage simulations depend on model performance, which is influenced by input variability and the degree of isotopic damping in the stream, a longer‐term storage analysis of this model indicates a system that is only sensitive to more extreme hydroclimatic variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The chemistry of bulk precipitation and stream water was monitored in an acidic afforested catchment at Llyn Brianne in upland Wales between 1985 and 1990. Throughfall, stemflow and soil water chemistry were also monitored between 1988 and 1989. Marine-derived solutes dominated the ionic composition of precipitation and stream water, which had mean Cl concentrations of 113 μequiv. 1?1 and 245 μequiv. 1?1, respectively. The higher concentrations in stream water reflect occult and dry deposition on the forest canopy and the effect of interception and transpiration losses. Chloride variations in stream water (112-454μequiv. 1?1) were damped compared with bulk precipitation (28-762μequiv. 1?1) due to the mixing of event (‘new’) water with pre-event (‘old’) water in the catchment soils. A storm episode monitored in the catchment in April 1989 was associated with high sea salt inputs and Cl concentrations in throughfall (1466μequiv. 1?1) and storm runoff were exceptionally high (392μequiv. 1?1). The Cl signal in stream water during the episode was consistent with an event (‘new’) water contribution to the storm response. However, a short-term hydrochemical budget estimated that although Cl outputs from the catchment during the event (1.17 kg ha?1) were equivalent to 8% of inputs in throughfall and stemflow, the storm runoff was equivalent to 32% of effective precipitation. This indicates that pre-event (‘old’) water was the dominant source (> 75%) of storm runoff. Although sea salt inputs during the event had a marked impact on stream water chemistry, the anomalously high levels of acidity sometimes associated with sea salt events were not observed in this particular study.  相似文献   

11.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
1 Introduction in China, with an area of 4400 km2 and a drainage area With the advancement of global change study, peo- of nearly 29,660 km2[2]. Occurring at a “climatic triple ple are paying more and more attention to the conti- junction” among the East Asian monsoon, Indian nental environment (in which we reside), its evolution Monsoon and the Westerly Jet Stream, it lies in the and its future tendency. As a component of the global transitional belt of the east monsoonal humid areas sys…  相似文献   

13.
Lake Qinghai is the largest inland brackish lake in China and lies within the NE Tibetan Plateau. Our study shows that pollen assemblages in each vegetation belt are significantly correlated with the vegetation types of this area. Among the herbaceous and shrubby pollen assemblages, Artemisia is over-represented, while Poaceae, Cyperaceae and Polygonaceae are under-represented. Artemisia/ Chenopodiaceae (A/C) ratios with the regional vegetation characteristic can be used as a proper index to reconstruct the...  相似文献   

14.
In this study, we investigate the surface flow time of rise in response to rainfall and snowmelt events at different spatial scales and the main sources originating channel runoff and spring water in a steep nested headwater catchment (Rio Vauz, Italian Dolomites), characterized by a marked elevation gradient. We monitored precipitation at different elevations and measured water stage/streamflow at the outlet of two rocky subcatchments of the same size, representative of the upper part of the catchment dominated by outcropping bedrock, at the outlet of a soil‐mantled and vegetated subcatchment of similar size but different morphology, and at the outlet of the main catchment. Hydrometric data are coupled with stable isotopes and electrical conductivity sampled from different water sources during five years, and used as tracers in end‐member mixing analysis, application of two component mixing models and analysis of the slope of the dual‐isotope regression line. Results reveal that times of rise are slightly shorter for the two rocky subcatchments, particularly for snowmelt and mixed rainfall/snowmelt events, compared to the soil‐mantled catchment and the entire Rio Vauz Catchment. The highly‐variable tracer signature of the different water sources reflects the geomorphological and geological complexity of the study area. The principal end‐members for channel runoff and spring water are identified in rainfall and snowmelt, which are the dominant water sources in the rocky upper part of the study catchment, and soil water and shallow groundwater, which play a relevant role in originating baseflow and spring water in the soil‐mantled and vegetated lower part of the catchment. Particularly, snowmelt contributes up to 64 ± 8% to spring water in the concave upper parts of the catchment and up to 62 ± 11% to channel runoff in the lower part of the catchment. These results offer new experimental evidences on how Dolomitic catchments capture and store rain water and meltwater, releasing it through a complex network of surface and subsurface flow pathways, and allow for the construction of a preliminary conceptual model on water transmission in snowmelt‐dominated catchments featuring marked elevation gradients.  相似文献   

15.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   

16.
晚第四纪青海湖演化研究析视与讨论   总被引:37,自引:4,他引:37  
本文根据钻孔及湖周湖泊沉积露头的分析,重建了晚第四纪以来青海湖湖面波动的历史,并结合近年有关青海湖演变的文献,评述和讨论了造成青海湖高湖面和低湖面的原因,最后预测了青海湖近代萎缩的未来趋势。  相似文献   

17.
青海湖近900年来气候环境演化的湖泊沉积记录   总被引:31,自引:9,他引:31  
通过对青海湖沉积物碳酸盐含量、磁化率、TOC等多环境指标的分析,探讨了青海湖地区近900年来的气候环境演变。结果表明青海湖地区近900年来气候变化属于暖干-冷湿的气候演替类型,经历了5次冷湿期和5次暖干期,中世纪暖期、小冰期以及20世纪以来的升温在该沉积岩芯有清晰的记录。沉积物的磁化率和沉积速率的变化忠实地记录了本世纪以来人类活动的影响。  相似文献   

18.
基于2008-2018年环太湖江苏段入湖河道污染物通量及湖区水质数据,从时空变化及相关关系两个方面探讨了入湖污染物通量与湖区水质的响应关系,并分析了污染物进入湖体影响水质的主要因子.结果表明:太湖污染减排已见成效,氨氮、总氮、高锰酸盐指数和化学需氧量入湖污染物通量整体呈下降趋势,年均下降率分别为8.0%、2.0%、1.6%和2.2%,湖体氨氮和总氮时间格局响应较好,年均下降率分别为2.1%和2.3%.湖体氨氮、总氮、总磷、高锰酸盐指数和化学需氧量与入湖污染物通量整体由西北部、西部湖区向东南部、东部湖区递减,空间格局上响应基本一致.全湖区年尺度总氮、氨氮浓度与入湖河道污染物通量分别呈显著正相关、极显著正相关关系;影响湖区总氮、氨氮的主要因子为入湖河道的总氮、氨氮浓度,其次为入湖河道浓度与原湖区水质差值,因此亟需加强入湖河道水质浓度的控制.  相似文献   

19.
青海湖最近25年变化的遥感调查与研究   总被引:23,自引:6,他引:23  
沈芳  匡定波 《湖泊科学》2003,15(4):289-296
青海湖是我国最大的内陆水体,它及其流域的生态环境近来一直倍受广泛关注.其水位下降、湖水面积缩小、湖体分离等更是研究的热点问题.本文针对这些问题展开遥感调查与研究,收集了多时相、多种信息源的影像数据;分析了1975年至2000年25年以来湖泊的变迁及成因,湖岸变化及湖体分离状况;用遥感方法反推25年以来湖水位的变化;计算了1975、2000年两个年份的湖水面积,并遥感分析了湖水面积萎缩的原因.此外,对青海湖进行了实地调查与水深测量,建立了该湖泊水深反演模型.  相似文献   

20.
The concentration and isotopic composition of nitrate were analyzed to improve an understanding of nitrate sources and transformation processes in a typical karstic agricultural field in the Houzhai catchment, Guizhou Province, Southwest China. The results revealed that no distinct spatial pattern of content and isotopic composition of nitrate exists in this karst catchment. Nitrate in surface stream (SFS) had slightly lighter isotopic composition and lower concentration compared with nitrate in subterranean stream (STS) during the dry season. Concentrations of SFS nitrate increased to concentrations similar to those of STS during the wet season. The isotopic values indicated that nitrate were mainly impacted by manure sources during the dry season and influenced by a mix of chemical fertilizer and manure during the wet season. The denitrification rates were roughly estimated based on the isotopic compositions of nitrate after considering volatilization and ignoring assimilation. The calculated result showed that approximately one fifth of nitrate load was removed by denitrification in the catchment. Annual nitrate flux from the outlets accounted for 14.2% of applied total fertilizers used in the catchment, approximately 85% of total transported flux from the catchment in the wet season. Furthermore, chemical weathering processes were enhanced by using nitrogen fertilizer because liberated protons and enhanced HCO3? flux were produced through by nitrification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号