首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spatially discontinuous permafrost conditions frequently occur in the European Alps. How soils under such conditions have evolved and how they may react to climate warming is largely unknown. This study focuses on the comparison of nearby soils that are characterised by the presence or absence of permafrost (active‐layer thickness: 2–3 m) in the alpine (tundra) and subalpine (forest) range of the Eastern Swiss Alps using a multi‐method (geochemical and mineralogical) approach. Moreover, a new non‐steady‐state concept was applied to determine rates of chemical weathering, soil erosion, soil formation, soil denudation, and soil production. Long‐term chemical weathering rates, soil formation and erosion rates were assessed by using immobile elements, fine‐earth stocks and meteoric 10Be. In addition, the weathering index (K + Ca)/Ti, the amount of Fe‐ and Al‐oxyhydroxides and clay minerals characteristics were considered. All methods indicated that the differences between permafrost‐affected and non‐permafrost‐affected soils were small. Furthermore, the soils did not uniformly differ in their weathering behaviour. A tendency towards less intense weathering in soils that were affected by permafrost was noted: at most sites, weathering rates, the proportion of oxyhydroxides and the weathering stage of clay minerals were lower in permafrost soils. In part, erosion rates were higher at the permafrost sites and accounted for 79–97% of the denudation rates. In general, soil formation rates (8.8–86.7 t/km2/yr) were in the expected range for Alpine soils. Independent of permafrost conditions, it seems that the local microenvironment (particularly vegetation and subsequently soil organic matter) has strongly influenced denudation rates. As the climate has varied since the beginning of soil evolution, the conditions for soil formation and weathering were not stable over time. Soil evolution in high Alpine settings is complex owing to, among others, spatio‐temporal variations of permafrost conditions and thus climate. This makes predictions of future behaviour very difficult. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Estimation of spatially averaged denudation rates from cosmogenic nuclide concentrations in sediments depends on the surface production rates, the scaling methods of cosmic ray intensities, and the correction algorithms for skyline, snow and vegetation shielding used to calculate terrestrial cosmogenic nuclide production. While the calculation of surface nuclide production and application of latitude, altitude and palaeointensity scaling algorithms are subjects of active research, the importance of additional correction for shielding by topographic obstructions, snow and vegetation is the subject of ongoing debate. The derivation of an additional correction factor for skyline shielding for large areas is still problematic. One important issue that has yet to be addressed is the effect of the accuracy and resolution of terrain representation by a digital elevation model (DEM) on topographic shielding correction factors. Topographic metrics scale with the resolution of the elevation data, and terrain smoothing has a potentially large effect on the correction of terrestrial cosmogenic nuclide production rates for skyline shielding. For rough, high‐relief landscapes, the effect of terrain smoothing can easily exceed analytical errors, and should be taken into account. Here we demonstrate the effect of terrain smoothing on topographic shielding correction factors for various topographic settings, and introduce an empirical model for the estimation of topographic shielding factors based on landscape metrics. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

3.
Mesas are ubiquitous landforms in arid and semiarid regions and are often characterized by horizontal stratified erodible rocks capped by more resistant strata. The accepted conceptual model for mesa evolution and degradation considers reduction in the width of the mesa flat‐top plateau due to cliff retreat but ignores possible denudation of the mesa flat‐top and the rates and mechanism of erosion. In this study we examine mesas in the northeastern hyperarid Negev Desert where they appear in various sizes and morphologies and represent different stages of mesa evolution. The variety of mesas within a single climatic zone allows examination of the process of mesa evolution through time. Two of the four sites examined are characterized by a relatively wide (200–230 m) flat‐top and a thick caprock whereas the other two are characterized by a much narrower remnant flat‐top (several meters) and thinner caprock. We use the concentration of the cosmogenic nuclide 10Be for: (a) determining the chronology of the various geomorphic features associated with the mesa; and (b) understanding geomorphic processes forming the mesa. The 10Be data, combined with field observations, suggest a correlation between the width of flat‐top mesa and the denudation and cliff retreat rates. Our results demonstrate that: (a) cliff retreat rates decrease with decreasing width of the flat‐top mesa; (b) vertical denudation rates increase with decreasing width of the flat‐top mesa below a critical value (~60 m, for the Negev Desert); (c) the reduction in the width of the flat‐top mesa is driven mainly by cliff retreat accompanied by extremely slow vertical denudation rate which can persist for a very long time (>106 Ma); and (d) when the width of the mesa decreases below a certain threshold, its rate of denudation increases dramatically and mesa degradation is completed in a short time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we use isochron‐burial dating to date the Swiss Deckenschotter, the oldest Quaternary deposits of the northern Alpine Foreland. Concentrations of cosmogenic 10Be and 26Al in individual clasts from a single stratigraphic horizon can be used to calculate an isochron‐burial age based on an assumed initial ratio and the measured 26Al/10Be ratio. We suggest that, owing to deep and repeated glacial erosion, the initial isochron ratio of glacial landscapes at the time of burial varies between 6.75 and 8.4. Analysis of 22 clasts of different lithology, shape, and size from one 0.5 m thick gravel bed at Siglistorf (Canton Aargau) indicates low nuclide concentrations: <20 000 10Be atoms/g and <150 000 26Al atoms/g. Using an 26Al/10Be ratio of 7.6 (arithmetical mean of 6.75 and 8.4), we calculate a mean isochron‐burial age of 1.5 ± 0.2 Ma. This age points to an average bedrock incision rate between 0.13 and 0.17 mm/a. Age data from the Irchel, Stadlerberg, and Siglistorf sites show that the Higher Swiss Deckenschotter was deposited between 2.5 and 1.3 Ma. Our results indicate that isochron‐burial dating can be successfully applied to glaciofluvial sediments despite very low cosmogenic nuclide concentrations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Glacial erosion is the basic process that has shaped the landscapes of the Alps. Despite intense research over centuries, and the use of various techniques, determination of glacial erosion rates remains challenging. This is not only because the location where the process occurs is almost inaccessible, but also because it is dependent on many different factors, including ice thickness and velocity, glacier thermal regime and lithology. Reported glacial erosion rates range over several orders of magnitude (0.01 to >10 mm a−1). Most studies focus on crystalline bedrock, whereas few researchers have investigated glacial erosion on limestone. Here we analyse glacially polished bedrock surfaces at the recently deglaciated forefield of the Tsanfleuron glacier, Swiss Alps. The nearly horizontally bedded limestone hosts a well-developed karst system. Meltwater from the glacier drains into the subsurface within a few metres of the ice margin. By combining geomorphological mapping, measurement of cosmogenic 36Cl concentrations of glacially eroded bedrock surfaces and a numerical model (MECED), we quantify at each sample location the amount of rock removed during glacier occupation. The glacial erosion rates calculated from these values range from 0 to 0.08 mm a−1. These are orders of magnitude lower than values measured at comparable sites on crystalline bedrock. The high 36Cl concentrations we measured show that the Tsanfleuron glacier was unable to effectively erode the gently dipping, strongly karstified limestone. We suggest that this effect may play a key role in formation and preservation over many glacial cycles of high-elevation, low-relief limestone plateaus in the Alps. © 2020 John Wiley & Sons Ltd.  相似文献   

6.
Although beryllium‐10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment‐wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be‐budget of detrital materials that characterize the morphogenetic domains representative of high‐altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins‐Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium‐10 concentrations measured in the Etages catchment vary from ~1 × 104 to 4.5 × 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment‐wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the ‘let nature do the averaging’ principles may be violated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The present work quantifies the erosive processes in the two main substrates (schists–phyllites and granites–gneisses) of the upper Maracujá Basin in the Quadrilátero Ferrífero/MG, Brazil, a region of semi‐humid tropical climate. Two measuring methods of concentration were used: (i) in situ produced 10Be in quartz veins (surface erosion rates) and (ii) 10Be in fluvial sediments (basin erosion rates). The results confirm that (i) erosion tends to be more aggressive close to the headwaters than in the lower parts of the basin and (ii) the region is now affected by dissection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Terrestrial cosmogenic nuclides (TCN) have widely been used as proxies in determining denudation rates in catchments. Most studies were limited to samples from modern active streams, thus little is known about the magnitude and causes of TCN variability on millennial time scales. In this work we present a 6 kyrs long, high resolution record of 10Be concentrations (n = 18), which were measured in sediment cores from an alluvial fan delta at the outlet of the Fedoz Valley in the Swiss Alps. This record is paired with a 3‐year time series (n = 4) of 10Be measured in sediment from the active stream currently feeding this fan delta. The temporal trend in the 10Be concentrations after correction for postdepositional production of 10Be was found to be overall constant and in good agreement with the modern river 10Be concentration. The calculated mean catchment‐wide denudation rate amounts to 0.73 ± 0.18 mm yr?1. This fairly constant level of 10Be concentrations can be caused by a constant denudation rate over time within the catchment or alternatively by a buffered signal. In this contribution we suggest that the large alluvial floodplain in the Fedoz Valley may act as an efficient buffer on Holocene time scales in which sediments with different 10Be signatures are mixed. Therefore, presumable variations in the 10Be signals derived from changes in denudation under a fluctuating Holocene climate are only poorly transferred to the catchment outlet and not recorded in the 10Be record. However, despite the absence of high frequency signals, we propose that the buffered and averaged 10Be signal could be meaningfully and faithfully interpreted in terms of long‐term catchment‐averaged denudation rate. Our study suggests that alluvial buffers play an important role in regulating the 10Be signal exported by some alpine settings that needs to be taken into account and further investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The Tangra Yum Co graben is one of the active structures that accommodate the east‐west extension of the southern Tibetan Plateau and hosts one of the largest Tibetan lakes, which experienced lake‐level changes of ~200 m during the Holocene. In this study, cosmogenic 10Be is employed to: (1) quantify catchment‐wide denudation rates in fault‐bounded mountain ranges adjacent to the Tangra Yum Co graben; (2) date palaeo‐shorelines related to the Holocene lake‐level decline; and (3) determine the age of glacial advances in this region. The fault‐bounded, non‐glaciated mountain range north of Tangra Yum Co – and presumably most other areas around the lake – erode at low rates of 10–70 mm/ka. Owing to the slow erosion of the landscape, the sediments delivered to Tangra Yum Co have high 10Be concentrations. As a consequence, accurate exposure dating of sediment‐covered terraces and beach ridges is difficult, because the pre‐depositional 10Be concentration may exceed the post‐depositional 10Be concentration from which exposure ages are calculated. This difficulty is illustrated by a rather inaccurate 10Be exposure age of 2.3 ± 1.4 ka (i.e. an error of 60%) for a terrace that is located 67 m above the lake. Nevertheless, the age is consistent with luminescence ages for a series of beach ridges and provides further evidence for the decline of the lake level in the late Holocene. At Tangra Yum Co exposure dating of beach ridges via 10Be depth profiles is not feasible, because the pre‐depositional 10Be component in these landforms varies with depth, which violates a basic assumption of this approach. 10Be ages for boulders from two moraines are much older than the early Holocene lake‐level highstand, indicating that melting of glaciers in the mountain ranges adjacent to Tangra Yum Co has not contributed significantly to the lake‐level highstand in the early Holocene. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Millennial catchment–mean erosion rates derived from terrestrial cosmogenic nuclides are generally based on the assumption that the lithologies of the parent rock each contain the same proportion of quartz. This is not always true for large catchments, in particular at the edge of mountainous plateaus where quartz‐rich basement rocks may adjoin sedimentary or volcano‐sedimentary rocks with low quartz content. The western Central Andes is an example of this type of situation. Different quartz contents may be taken into account by weighting the TCN production rates in the catchment. We recall the underlying theory and show that weighting the TCN production rate may also lead to bias in the case of a spatial correlation between erosion rate and lithology. We illustrate the difference between weighted and unweighted erosion rates for seven catchments (16 samples) in southern Peru and northern Chile and show variations up to a factor of 2 between both approaches. In this dataset, calculated erosion rates considering only granitoid outcrops are better correlated with catchment mean slopes than those obtained without taking into account the geological heterogeneity of the drained watershed. This dataset analysis demonstrates that weighting erosion rates by relative proportions of quartz is necessary to evaluate the uncertainties for calculated catchment–mean erosion rates and may reveal the correlation with geomorphic parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower‐elevation Piedmont and higher‐elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic beryllium‐10 (10Be) in quartz separated from sediment samples (n = 50) collected in 32 streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104–105 years. These basin‐averaged erosion rates (5.4–49 m Myr?1) are consistent with those measured elsewhere in the southern Appalachain Mountains and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Relief generation in non‐glaciated regions is largely controlled by river incision into bedrock but datable fluvial terraces that allow quantifying incision rates are not always present. Here we suggest a new method to determine river incision rates in regions where low‐relief surfaces are dissected by streams. The approach consists of three steps and requires the 10Be concentrations of a stream sediment sample and a regolith sample from the low‐relief surface. In the first step, the spatial distribution of 10Be surface concentrations in the given catchment is modelled by assuming that denudation rates are controlled by the local hillslope angles. The slope–denudation rate relation for this catchment is then quantified by adjusting the relation between slope angle and denudation rate until the average 10Be concentration in the model is equal to the one measured in the stream sediment sample. In the second step, curved swath profiles are used to measure hillslope angles adjacent to the main river channel. Third, the mean slope angle derived from these swath profiles and the slope–denudation relation are used to quantify the river incision rate (assuming that the incision rate equals the denudation rate on adjacent hillslopes). We apply our approach to two study areas in southern Tibet and central Europe (Black Forest). In both regions, local 10Be denudation rates on flat parts of the incised low‐relief surface are lower than catchment‐wide denudation rates. As the latter integrate across the entire landscape, river incision rates must exceed these spatially averaged denudation rates. Our approach yields river incision rates between ~15 and ~30 m/Ma for the Tibetan study area and incision rates of ~70 to ~100 m/Ma in the Black Forest. Taking the lowering of the low‐relief surfaces into account suggests that relief in the two study areas increases at rates of 10–20 and 40–70 m/Ma, respectively. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Accurate estimates of watershed denudation absent anthropogenic effects are required to develop strategies for mitigating accelerated physical erosion resulting from human activities, to model global geochemical cycles, and to examine interactions among climate, weathering, and uplift. We present a simple approach to estimate predevelopment denudation rates using in-situ-produced cosmogenic 10Be in fluvial sediments. Denudation processes in an agricultural watershed (Cayaguás River Basin, Puerto Rico) and a matched undisturbed watershed (Icacos River Basin) were compared using 10Be concentrations in quartz for various size fractions of bed material. The coarse fractions in both watersheds bear the imprint of long subsurface residence times. Fine material from old shallow soils contributes little, however, to the present-day sediment output of the Cayaguás. This confirms the recent and presumably anthropogenic origin of the modern high denudation rate in the Cayaguás Basin and suggests that pre-agricultural erosional conditions were comparable to those of the present-day Icacos.  相似文献   

17.
The Serra do Mar escarpment, located along the southeastern coast of Brazil, is a high‐elevation passive margin escarpment. This escarpment evolved from the denudation of granites, migmatites and gneisses. The granites outcrop in the form of a ridge along the escarpment crest, due to its differential erosion (‘sugarloaf’ hills) from the surrounding lithologies. Several studies suggest that the passive margin escarpments are actively retreating toward the interior of the continent. However, no prior study has calculated the long‐term denudation rates of Serra do Mar to test this hypothesis. In this study, we measured the in situ‐produced 10Be concentration in fluvial sediments to quantify the catchment‐wide long‐term denudation rates of the Serra do Mar escarpment in southern Brazil. We sampled the fluvial sediments from ten watersheds that drain both sides of the escarpment. The average long‐term denudation rate of the oceanic side is between 2.1‐ and 2.6‐fold higher than the rate of the continental side: 26.04 ± 1.88 mm ka‐1 (integrating over between 15.8 ka‐1 and 46.6 ka‐1) and 11.10 ± 0.37 mm ka‐1 (integrating over between 52.9 ka‐1 and 85.4 ka‐1), respectively. These rates indicate that the coastal base level is controlling the escarpment retreat toward the continental high lands, which is consistent with observations made at other high‐elevation passive margins around the globe. The results also demonstrate the differential erosion along the Serra do Mar escarpment in southern Brazil during the Quaternary, where drainages over granites had lower average denudation rates in comparison with those over migmatites and gneisses. Moreover, the results demonstrate that the ocean‐facing catchments have been eroded more intensely than those facing the continent. The results also reveal that drainage over the granites decreases the average denudation rates of the ocean‐facing catchments and the ‘sugarloaf’ hills therefore are natural barriers that slowly retreat once they are exhumed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
We use cosmogenic 10Be concentrations in amalgamated rock samples from active, ice‐cored medial moraines to constrain glacial valley sidewall backwearing rates in the Kichatna Mountains, Alaska Range, Alaska. This dramatic landscape is carved into a small ~65 Ma granitic pluton about 100 km west of Denali, where kilometer‐tall rock walls and ‘cathedral’ spires tower over a radial array of over a dozen valley glaciers. These supraglacial landforms erode primarily by rockfall, but erosion rates are difficult to determine. We use cosmogenic 10Be to measure rockwall backwearing rates on timescales of 103–104 years, with a straightforward sampling strategy that exploits ablation‐dominated medial moraines. A medial moraine and its associated englacial debris serve as a conveyor system, bringing supraglacial rockfall debris from accumulation‐zone valley walls to the moraine crest in the ablation zone. We discuss quantitatively several factors that complicate interpretation of cosmogenic concentrations in this material, including the complex scaling of production rates in very steep terrain, the stochastic nature of the rockfall erosion process, the unmixed nature of the moraine sediment, and additional cosmogenic accumulation during transport of the sediment. We sampled medial moraines on each of three glaciers of different sizes and topographic aspects. All three moraines are sourced in areas with identical rock and similar sidewall relief of ~1 km. Each sample was amalgamated from 25 to 35 clasts collected over a 1‐km longitudinal transect of each moraine. Two of the glaciers yield similar 10Be concentrations (~1·6–2·2 × 104 at/g) and minimum sidewall slope‐normal erosion rates (~0·5–0·7 mm/yr). The lowest 10Be concentrations (8 × 103 at/g) and the highest erosion rates (1·3 mm/yr) come from the largest glacier in the range with the lowest late‐summer snowline. These rates are reasonable in an alpine glacial setting, and are much faster than long‐term exhumation rates of the western Alaska Range as determined by thermochronometric studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Present erosion in mountainous areas of Western Europe causes land management problems, particularly for areas located downstream of erosion zones. Except for transalpine roads and ski resorts, economic activities no longer require as much space as they did in the past. Therefore, natural reforestation has provided signi?cant protection for alpine hillslopes during the 20th century. However, extreme ?oods continue to cause severe damage in intra‐alpine valleys, as well as in piedmont and surrounding plains, making the study of present water erosion phenomena very important. Many studies have investigated the processes and factors of water erosion on slopes at both the catchment and plot scales. They have focused on rock fragmentation and transportation in different ?elds, the spatial and temporal explanatory variables, the consequences downstream (?ooding, sedimentation, river bed evolution) and the impact of ?oods. In the French Alps, present erosion has been studied in a variety of outcrops, with several recent studies conducted in ?elds such as marls, clayey deposits, molasses and moraines. These kinds of outcrops are found throughout the alpine massif, including an area of special interest on the great Jurassic black marl outcrop where badlands are frequently observable. Geomorphologists and hydrologists have been particularly interested in the strong erosion processes in marls, seeking to determine the main patterns and the impact of spatial and temporal factors on soil loss quantities. The main climatic factors of rock disaggregation were found to be the freeze–thaw and wet–dry cycles, which destroy rock cohesion, and the splash effect of rain. The principal site variables are vegetation cover, exposure and dip–slope angle. Erosion rates are two or three orders of magnitude higher on bare soils than on pastures; northern aspect slopes suffer two to four times as much soil loss as southern aspect slopes. Finally, the angle formed by the slope and the dip also determines different behaviours: erosion rates are higher when slope and dip are perpendicular than when they are parallel. The transportation agents are mostly debris ?ows and runoff caused by intense precipitation. Annual erosion depth in the marls is generally assumed to be substantial, up to 10 mm. The high value can be explained by the severity of the climatic conditions and the brittleness of the lithology, which results in numerous fractures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号