首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are ongoing efforts to render conventional biosand filters (BSF) more efficient for safe drinking water provision. One promising option is to amend BSF with a reactive layer containing metallic iron (Fe0). The present communication presents some conceptual options for efficient Fe0‐amended BSF in its fourth generation. It is shown that a second fine‐sand layer should be placed downwards from the Fe0‐reactive layer to capture dissolved iron. This second fine‐sand layer could advantageously contain adsorbing materials (e.g. activated carbons, wooden charcoals). An approach for sizing the Fe0‐reactive layer is suggested based on 3 kg Fe0 per filter. Working with the same Fe0 load will ease comparison of results with different materials and the scaling up of household BSF to large scale community slow sand filters (SSF).  相似文献   

2.
Current knowledge of the basic principles underlying the design of Fe0 beds is weak. The volumetric expansive nature of iron corrosion was identified as the major factor determining the sustainability of Fe0 beds. This work attempts to systematically verify developed concepts. Pumice and sand were admixed to 200 g of Fe0 in column studies (50:50 volumetric proportion). Reference systems containing 100% of each material have been also investigated. The mean grain size of the used materials (in mm) were 0.28 (sand), 0.30 (pumice), and 0.50 (Fe0). The five studied systems were characterized (i) by the time dependent evolution of their hydraulic conductivity (permeability) and (ii) for their efficiency for aqueous removal of CuII, NiII, and ZnII (about 0.3 mM of each). Results showed unequivocally that (i) quantitative contaminant removal was coupled to the presence of Fe0, (ii) additive admixture lengthened the service life of Fe0 beds, and (iii) pumice was the best admixing agent for sustaining permeability while the Fe0/sand column was the most efficient for contaminant removal. The evolution of the permeability was well‐fitted by the approach that the inflowing solution contained dissolved O2. The achieved results are regarded as starting point for a systematic research to optimize/support Fe0 filter design.  相似文献   

3.
Filtration systems containing metallic iron as reactive medium (Fe0 beds) have been intensively used for water treatment during the last two decades. The sustainability of Fe0 beds is severely confined by two major factors: (i) reactivity loss as result of the formation of an oxide scale on Fe0 and (ii) permeability loss due to pore filling by generated iron corrosion products. Both factors are inherent to iron corrosion at pH > 4.5 and are common during the lifespan of a Fe0 bed. It is of great practical significance to improve the performance of Fe0 beds by properly addressing these key factors. Recent studies have shown that both reactivity loss and permeability loss could be addressed by mixing Fe0 and inert materials. For a non‐porous additive like quartz, the threshold value for the Fe0 volumetric proportion is 51%. Using the Fe0/quartz system as reference, this study theoretically discusses the possibility of (i) replacing Fe0 by bimetallic systems (e.g., Fe0/Cu0), or (ii) partially replacing quartz by a reactive metal oxide (MnO2 or TiO2) to improve the efficiency of Fe0 beds. Results confirmed the suitability of both tools for sustaining Fe0 bed performance. It is shown that using a Fe0:MnO2 system with the volumetric proportion 51:49 will yield a filter with 40% residual porosity at Fe0 depletion (MnO2 porosity 62%). This study improves Fe0 bed design and can be considered as a basis for further refinement and detailed research for efficient Fe0 filters.  相似文献   

4.
Water treatment with metallic iron (Fe0) is still based on the premise that Fe0 is a reducing agent. An alternative concept stipulates that contaminants are removed by adsorption, co‐precipitation, and size‐exclusion in a reactive filtration process. This article underlines the universal validity of the alternative concept. It is shown that admixing non‐expansive material to Fe0 as a pre‐requisite for sustainable Fe0‐based filtration systems. Fe0‐based filters are demonstrated an affordable, appropriate, and efficient decentralized water treatment technology.  相似文献   

5.
Over the past 30 years the literature has burgeoned with in situ approaches for groundwater remediation. Of the methods currently available, the use of metallic iron (Fe0) in permeable reactive barrier (PRB) systems is one of the most commonly applied. Despite such interest, an increasing amount of experimental and field observations have reported inconsistent Fe0 barrier operation compared to contemporary theory. In the current work, a critical review of the physical chemistry of aqueous Fe0 corrosion in porous media is presented. Subsequent implications for the design of Fe0 filtration systems are modeled. The results suggest that: (i) for the pH range of natural waters (>4.5), the high volumetric expansion of Fe0 during oxidation and precipitation dictates that Fe0 should be mixed with a non‐expansive material; (ii) naturally occurring solute precipitates have a negligible impact on permeability loss compared to Fe0 expansive corrosion; and (iii) the proliferation of H2 metabolizing bacteria may contribute to alleviate permeability loss. As a consequence, it is suggested that more emphasis must be placed on future work with regard to considering the Fe0 PRB system as a physical (size‐exclusion) water filter device.  相似文献   

6.
Metallic iron (Fe0) is often reported as a reducing agent for environmental remediation. There is still controversy as to whether Fe0 plays any significant direct role in the process of contaminant reductive transformation. The view that Fe0 is mostly a generator of reducing agents (e.g. H, H2 and FeII) and Fe oxyhydroxides has been either severely refuted or just tolerated. The tolerance is based on the simplification that, without Fe0, no secondary reducing agents could be available. Accordingly, Fe0 serves as the original source of electron donors (including H, H2 and FeII). The objective of this communication is to refute the named simplification and establish that quantitative reduction results from secondary reducing agents. For this purpose, reports on aqueous contaminant removal by Al0, Fe0 and Zn0 are comparatively discussed. Results indicated that reduction may be quantitative in aqueous systems containing Fe0 and Zn0 while no significant reduction is observed in Al0/H2O systems. Given that Al0 is a stronger reducing agent than Fe0 and Zn0, it is concluded that contaminant reduction in Fe0/H2O systems results from synergic interactions between H/H2 and FeII within porous Fe oxyhydroxides. This conclusion corroborates the operating mode of Fe0 bimetallics as H/H2 producing systems for indirect contaminant reduction.  相似文献   

7.
The aim of this paper was to investigate a novel method of polyelectrolyte injection into deep bed filter media. The raw water and the filter media used in the pilot filters were obtained from the Omerli Reservoir that supplies one million m3/day of water to the greater city of Istanbul. A cationic polyelectrolyte was injected at the entrance of the filter and at different depths of the sand bed. The effect of polyelectrolyte injection location and method was evaluated by measuring the effluent turbidity, effluent particle count, and the head losses at different locations of the sand media. It was observed that the simultaneous injection of the polyelectrolyte on top of the filter bed and at the center can lengthen the filter run time while achieving an effluent turbidity as low as 0.06 NTU (nephelometric turbidity unit) and 4 log (99.99%) particle removal.  相似文献   

8.
Although intensive research on Fe(0) permeable reactive barriers (PRB) for in situ groundwater remediation has been conducted and multiple applications have been installed in the past two decades, some properties of reactive materials in use have not been fully considered and discussed yet. In the present investigation, a typical granular cast iron has been characterized with different techniques. The grain size distribution not only has an influence on the resulting pore geometry and the surface area but material properties significantly differ between fine and coarse grains. Metallographic analyses revealed large differences in both graphite inclusions and microstructures that likely influence the reactivity. Both graphite and cementite proved to be more resistant toward acidic dissolution compared to Fe0. The intrinsic material characteristics described here have not been covered in the existing PRB literature.  相似文献   

9.
The most abundant mineral on Earth has a perovskite crystal structure and a chemistry that is dominated by MgSiO3 with the next most abundant cations probably being aluminum and ferric iron. The dearth of experimental elasticity data for this chemically complex mineral limits our ability to calculate model seismic velocities for the lower mantle. We have calculated the single crystal elastic moduli (cij) for (Mg, Fe3 +)(Si, Al)O3 perovskite using density functional theory in order to investigate the effect of chemical variations and spin state transitions of the Fe3+ ions. Considering the favored coupled substitution of Mg2+-Si4 + by Fe3+-Al3+, we find that the effect of ferric iron on seismic properties is comparable with the same amount of ferrous iron. Ferric iron lowers the elastic moduli relative to the Al charge-coupled substitution. Substitution of Fe3+ for Al3+, giving rise to an Fe/Mg ratio of 6%, causes 1.8% lower longitudinal velocity and 2.5% lower shear velocity at ambient pressure and 1.1% lower longitudinal velocity and 1.8% lower shear velocity at 142 GPa. The spin state of the iron for this composition has a relatively small effect (< 0.5% variation) on both bulk modulus and shear modulus.  相似文献   

10.
About 1 mg/g dw Cu2+ and 8 mg/g dw Fe2+ were found in roots of reed plants when fed with heavy metal concentrations of 100 μM Cu2+ and 10 mM Fe2+ under hypoxia. Roots seemed to act as a kind of filter since the amounts in rhizomes were only 0.06 mg Cu2+/g dw and 2 mg Fe2+/g dw. Increased contents of both ions reduced posthypoxic respiration capacity by 40–50% and also the sum of adenylates (ATP, ADP, AMP) by the same order of magnitude, although energy charge values remained above 0.85 in Cu2+ and 0.79 in Fe2+ treatments. Energy metabolism of rhizomes was not affected. Copper and iron contents of roots as well as of rhizomes were high enough to induce oxidative stress when roots were fed with 40 μM Cu2+ and 1 mM Fe2+, respectively.From our results we conclude that increased, but environmentally attainable, amounts of copper and reduced iron ions disturb root energy metabolism, and therefore root functioning and development. Latent injuries, based on oxidative stress, may be harmful for roots and rhizomes under long term exposure.  相似文献   

11.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   

12.
An experimental and theoretical investigation of the effect of pressure on the solubility of FeO in molten iron has been carried out. Analyses of shock-wave compression data on iron oxides combined with measurements of the FeO bond length in “metallic” oxides suggest that the partial molar volume of FeO(V*) dissolved in molten iron is substantially smaller than that of molten wüstite. Hence the effect of high pressure should be to increase the solubility of FeO in molten iron at a given temperature. This inference is confirmed by an experimental investigation of the effect of pressure on the position of the FeFeO eutectic. Thermodynamic calculations based on these experiments yield an estimate forV* which is in reasonable agreement with the theoretical estimates. The experimental value ofV* is used to calculate the effect of high pressure upon the FeFeO phase diagram. Solubility of FeO in molten iron increases sharply with pressure, the liquid immiscibility region contracts and disappears around 20 GPa and it is predicted that the FeFeO phase diagram should resemble a simple eutectic system above about 20 GPa. Analogous calculations predict that the solubility of FeO in molten iron in equilibrium with magnesiowüstite (Mg0.8Fe0.2)O at 2500°C increase from 14 mol.%(P = 0) to above 25 mol.% at 20 GPa. If the core formed by segregation of metallic iron originally dispersed throughout the earth, it seems inevitable that it would dissolved large amounts of FeO, thereby accounting for the observation that the density of the outer core is substantially smaller than that of pure iron under correspondingP, T conditions.  相似文献   

13.
Distinguishing Iron-Reducing from Sulfate-Reducing Conditions   总被引:2,自引:0,他引:2  
Ground water systems dominated by iron‐ or sulfate‐reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS?, and S= species and denoted here as “H2S”). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron‐ and the sulfate‐reducing microorganisms that catalyze the production of Fe2+ and H2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2~0.2 to 0.8 nM). Conversely, if the Fe2+/H2S ratio was less than 0.30, consistent sulfate‐reducing (H2~1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron‐ and sulfate‐reducing zones or concomitant iron and sulfate reduction under nonelectron donor–limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems.  相似文献   

14.
The oxidation state of iron can significantly influence the physical and chemical properties of lower mantle minerals. To improve methods for estimation of Fe3+/∑Fe, synthetic assemblages of (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)O ferropericlase were synthesised from oxide starting mixtures in Re or Fe capsules at 26 GPa and 1650-1850 °C using a multianvil press. (Mg,Fe)(Si,Al)O3 majorite was also present in some of the run products. Both electron energy loss spectra (EELS) and Mössbauer spectra were measured for each run product, and a robust fitting method was developed for Mössbauer spectra using EELS results as a standard that enabled Fe3+/∑Fe of (Mg,Fe)(Si,Al)O3 perovskite to be determined from Mössbauer spectra of multiphase assemblages. There is a close to linear variation between Fe3+/∑Fe and Al concentration in (Mg,Fe)(Si,Al)O3 perovskite, independent of oxygen fugacity. The concentration of Fe3+ in (Mg,Fe)O increases with increasing iron concentration along curves of constant oxygen fugacity, where higher oxygen fugacity stabilises greater Fe3+ concentrations. Fe2+/Mg partition coefficients calculated from chemical composition data corrected for measured Fe3+/∑Fe showed values nearly identical within experimental error for all samples, and independent of Al concentration and oxygen fugacity. Simple empirical relations were derived to calculate Fe3+/∑Fe in (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)O ferropericlase samples for which no Mössbauer or EELS data were available, and tested by applying them to calculation of Fe2+/Mg partition coefficients from literature data for (Mg,Fe)(Si,Al)O3 perovskite-(Mg,Fe)O assemblages where only total iron concentrations had been measured. Results showed Fe2+/Mg partition coefficients that were equal to existing values within experimental error, hence confirming the validity of the empirical relations.  相似文献   

15.
The removal of chemical oxygen demand (COD) and phenol from olive oil mill wastewaters (OOMW) was investigated experimentally by using conventional Fenton (CFP) and Fenton type processes (FTP) with zero valent iron (ZVI). Different operational parameters such as initial pH, Fe2+, Fe0, and H2O2 concentrations were examined. Kinetic studies in terms of COD and phenol removals for both CFP and FTP were performed. The original pH value (4.6) of OOMW for CFP was found as the optimum pH. The determined optimum conditions are [Fe2+] = 1500 mg L?1, [H2O2] = 1750 mg L?1, and pH = 4.6 for CFP; [Fe0] = 2000 mg L?1, [H2O2] = 2000 mg L?1, and pH = 3 for FTP. 82.4% COD and 62% phenol removals were performed under the optimum conditions by CFP, while 82% COD and 63.4% phenol were removed by FTP. According to the results of kinetic studies, it was observed that COD and phenol were removed by FTP more rapidly, compared to CFP. Consequently, it was determined that both CFP and FTP were effective processes for the pretreatment of OOMW.  相似文献   

16.
Filter formulation and wavefield separation of cross-well seismic data   总被引:1,自引:0,他引:1  
Multichannel filtering to obtain wavefield separation has been used in seismic processing for decades and has become an essential component in VSP and cross-well reflection imaging. The need for good multichannel wavefield separation filters is acute in borehole seismic imaging techniques such as VSP and cross-well reflection imaging, where strong interfering arrivals such as tube waves, shear conversions, multiples, direct arrivals and guided waves can overlap temporally with desired arrivals. We investigate the effects of preprocessing (alignment and equalization) on the quality of cross-well reflection imaging wavefield separation and we show that the choice of the multichannel filter and filter parameters is critical to the wavefield separation of cross-well data (median filters, fk pie-slice filters, eigenvector filters). We show that spatial aliasing creates situations where the application of purely spatial filters (median filters) will create notches in the frequency spectrum of the desired reflection arrival. Eigenvector filters allow us to work past the limits of aliasing, but these kinds of filter are strongly dependent on the ratio of undesired to desired signal amplitude. On the basis of these observations, we developed a new type of multichannel filter that combined the best characteristics of spatial filters and eigenvector filters. We call this filter a ‘constrained eigenvector filter’. We use two real data sets of cross-well seismic experiments with small and large well spacing to evaluate the effects of these factors on the quality of cross-well wavefield separation. We apply median filters, fk pie-slice filters and constrained eigenvector filters in multiple domains available for these data sets (common-source, common-receiver, common-offset and common-midpoint gathers). We show that the results of applying the constrained eigenvector filter to the entire cross-well data set are superior to both the spatial and standard eigenvector filter results.  相似文献   

17.
Forward filters to transform the apparent resistivity function over a layered half-space into the resistivity transform have been derived for a number of sample intervals. The filters have no apparent Gibbs' oscillations and hence require no phase shift. In addition, the end points of the filter were modified to compensate for truncation. The filters were tested on simulated ascending and descending two-layer cases. As expected, “dense” filters with sample spacing of In (10)/6 or smaller performed very well. However, even “sparse” filters with spacing of In (10)/2 and a total of nine coefficients have peak errors of less than 5% for p1:p2 ratios of 10–6 to 106. If a peak error of 5.5% is acceptable, then an even sparser filter with only seven coefficients at a spacing of 3 In (10)/5 may be used.  相似文献   

18.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

19.
The kinetics of conversion of iron(III) (hydr)oxides to ferrous iron mediated by fulvic acid have been investigated in order to improve the understanding of the redox cycling of iron at the oxic-anoxic boundary in natural waters. Under the conditions similar to natural waters, fulvic acid is able to reduce the iron(III) (hydr)oxide. The kinetics of the reaction depend on the reactivity of iron(III) (hydr)oxides and the reducing power of the fulvic acid. The rate of reaction is 60 nm/h obtained under following conditions: total concentration of Fe(III) 1.0 × 10–4 M, pH 7.5, fulvic acid 5 mg/L. The rate is considered as a net result of reduction and oxidation in the > FeIII-OH/Fe(II) wheel coupled with fulvic acid. In a real natural water system, reductants other than fulvic acid may be of importance. The results obtained in the laboratory, however, provide evidence that the Fe(OH)3(s)/Fe(II) redox couple is able to act as an electron-transfer mediator for the oxidation of natural organic substances, such as fulvic acid by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号