首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the performance of two low cost and high performance adsorption materials, i.e., activated carbon produced from two natural waste products: Bamboo and coconut shell, in the removal of three pesticides from drinking water sources. Due to the fact that bamboo and coconut shell are abundant and inexpensive materials in many parts of the world, they respond to the “low‐cost” aspect. The adsorption capacities of two local adsorbents have been compared with commercial activated carbon to explore their potential to respond to the “high quality” aspect. Two pesticides were selected, namely dieldrin and chlorpyrifos, because they are commonly used in agriculture activities, and may remain in high concentrations in surface water used as drinking water sources. The results indicate that the adsorption of pesticides on activated carbons is influenced by physico‐chemical properties of the activated carbon and the pesticides such as the presence of an aromatic ring, and their molar mass. The activated carbon produced from bamboo can be employed as low‐cost and high performance adsorbent, alternative to commercial activated carbon for the removal of pesticides during drinking water production. The performance of activated carbon from bamboo was better due to its relatively large macroporosity and planar surface. The effect of adsorbent and pesticide characteristics on the performance was derived from batch experiments in which the adsorption behavior was studied on the basis of Freundlich isotherms.  相似文献   

2.
Olive oil mill wastewater (OMW) is environmentally hazardous not only because it contains high recalcitrant and toxic compounds, but also due to its high organic load and turbidity. In this study, oxidation of OMW by microwave (MW)‐activated persulfate is investigated. Box–Behnken design is applied to investigate the effects of operating conditions on operating cost, organic matter, and color removal. Multi response optimization is performed according to minimum operating cost, maximum organic matter and color removal efficiencies. At optimum conditions (persulfate anion dose of 266 g L?1, oxidation duration of 23.58 min, MW power of 567 W, and initial pH 2), chemical oxygen demand (COD) removal of 63.38%, color removal of 94.85%, and operating cost of 0.0633 Euro/g total organic carbon (TOC) removal are found. The biochemical oxygen demand (BOD5)/COD ratio is increased from 0.144 to 0.285. Results of Pareto analysis show individual effect of MW power is 92.81% for TOC removal, 15.52% for color removal, 68.99% for operating cost, respectively. According to the results, it is not recommended to use this process as an ultimate treatment unit due to the high amount of oxidizing agent consumed. Instead, it is recommended to be used as a pre‐ or post‐treatment step.  相似文献   

3.
Granular activated carbon (GAC) adsorption of two representative taste and odor (T & O) compounds, 2‐isopropyl‐3‐methoxy pyrazine (IPMP), and 2‐isobutyl‐3‐methoxy pyrazine (IBMP), in drinking water was investigated. Results show that the modified Freundlich equation best fit the experimental data during the adsorption isotherm tests, and the pseudo first‐order kinetics and intra‐particle diffusion kinetics well described the adsorption kinetics pattern. The calculated thermodynamic parameters (ΔH0, ΔS0, and ΔG0) indicated a spontaneous and endothermic adsorption process. Factors affecting the treatment efficiency were carefully evaluated. Acidic and alkaline conditions both favored GAC adsorption of IPMP and IBMP, especially the former. With the GAC dosage increasing, the first order adsorption rates increased, while the intra‐particle adsorption rates decreased. Within 12 h, 200 mg/L GAC could remove >90% of 150 µg/L IPMP and IBMP via adsorption at pH 3–11. Therefore, GAC is a promising treatment technology to control the T & O compounds associated water pollution.  相似文献   

4.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

5.
In this study, a new material consisting of activated‐carbon‐containing magnetic oxide is prepared for assisted microwave (MW) irradiation treatment of coking wastewater. The optimum condition for degrading coking wastewater is 98.14% chemical oxygen demand (COD), under which 87.57% ammonia nitrogen (NH3–N) can be removed. The results are verified by GC–MS, showing that most organic pollutants can be adsorbed by modified activated carbon (MAC). The surface morphology and elemental composition of MAC before and after microwave irradiation and adsorption is determined by scanning electron microscopy. After microwave irradiation, many apertures of pores looked relatively large. It can be shown that MAC as a catalyst in the microwave‐assisted treatment process has many advantages, including rapid degradation of COD and NH3–N. In conclusion, microwave‐irradiation‐assisted MAC treatment of coking wastewater is a novel technology that is economical, efficient, and has broad prospects for development.  相似文献   

6.
Water treatment residuals (WTRs) are effective phosphorus (P) immobilizers that have been used in constructed wetlands (CWs). In CWs, dissolved oxygen (DO) levels vary from location to location and fluctuate over time. Therefore, this work accessed the stability of P saturated ferric and alum water treatment residuals (FARs) under low (<1 mg/L), medium (2–4 mg/L), and high (5–8 mg/L) DO levels. In the experiments, which had a 40‐day duration, three stages of P release from the P saturated FARs were observed: an initial rapid P desorption stage, followed by a P re‐adsorption stage, and a P desorption balance stage. The strongest bonding between P and FARs occurred at the low DO level. A limited amount of Fe and Al was released from the P saturated FARs. Interestingly, the P in the FARs tended to transform from the Al bound P to the Fe bound P, and this transformation was stronger at lower DO levels. However, no more than 1.12% of the total P in the P saturated FARs was desorbed under any of these DO levels. Therefore, FARs can be considered as a safe P adsorption medium for CWs.  相似文献   

7.
In the present study, chemical oxygen demand (COD) removal by packed‐columns of activated carbon (AC) derived from two different materials (coal activated carbon, CAC and wood activated carbon, WAC) is reported as part of an on‐site wastewater treatment system for handling small volumes of wastewater generated at wood‐floor industries for which there are no proper on‐site treatment options available in the market. The performance of the sorbents, the effect of bed depth (0.19 and 0.57 m) and volumetric load (0.10 and 0.24 m h?1) on the breakthrough curve of sorption systems were studied. The results indicated the feasibility of using both ACs to treat these wastewaters. At the bed depth (0.57 m), volumetric load (0.24 m h?1), and 30% breakthrough, CAC and WAC showed treatment capacity of 40.5 L kg?1 in 250 h and 23.8 L kg?1 in 63 h, respectively. This indicated that CAC requires longer retention times to reach a performance similar to WAC. The experimental data was fit into the bed depth‐service time model showing that under the same conditions, CAC had higher maximum sorption capacity (N0) than WAC. Moreover, thermal regeneration at 500°C temperature could be a cost‐effective procedure since the reuse of spent AC through such regeneration process for further treatment could still achieve 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.  相似文献   

8.
The fate of the steroid hormones 17 β‐estradiol, estrone, estriol, 16 α‐hydroxyestrone, and β‐estradiol 17‐acetate, the hormone‐conjugates β‐estradiol 3‐sulfate and estrone 3‐sulfate, and the oral contraceptives 17 α‐ethinylestradiol and mestranol were studied during wastewater treatment as wastewater treatment plants are the major source contamination of urban surface waters with steroid hormones. The elimination efficiencies of three different concepts of WWTPs, i. e., activated sludge versus trickling filter, were compared over four weeks at different weather conditions. While larger WWTPs operating on activated sludge eliminated hormones more constantly than smaller WWTPs, heavy rainfall events led to a collapse of the elimination efficiency. By using trickling filter techniques for the treatment of wastewater an elimination of the steroid hormones could not be observed. Additionally, mass flows on a per person basis are compared. In the three experiments, which ran continuously for four weeks each, it turned out that the concentrations of ethinylestradiol and mestranol were below 6 ng/L in all samples. The inflow concentrations were 70 to 82 ng/L (estrone), 17 to 44 ng/L (estradiol), 61 to 130 ng/L (hydroxyestrone), 189 to 255 ng/L (estriol), 10 to 17 ng/L (estrone‐3‐sulfate) and about 28 ng/L (estradiol‐3‐ sulfate). While in the activated sludge treatment plants the elimination of estrone was 90 and 50%, respectively, estrone was formed from precursors in the trickling filter plant. A similar situation occurred for 17β‐estradiol, estrone 3‐sulfate, and estradiol 3‐sulfate. Hydroxyestrone was eliminated with similar efficiencies in all wastewater treatment plants (64 to 82%), as well as estriol (34 to 69%). Accordingly, the emissions of the wastewater treatment plants differed largely and were not attributed to the size of the respective plant, only.  相似文献   

9.
10.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

11.
The photocatalytic decolorization and mineralization of Reactive Black 5 (RB5) dye in presence of TiO2 Degussa P25 has been studied using artificial light radiation in a shallow pond slurry reactor. The equilibrium adsorption of dye, influence of pH (3–11), catalyst load (0.5–3.0 g/L), and dye concentration (20–100 mg/L) on decolorization kinetics were studied. The effect of area to volume ratio of photoreactor on decolorization kinetics has been also studied. Mineralization studies were performed at optimized conditions of pH (3) and catalyst load (1.5 g/L). The maximum adsorption (26.5 mg/g) of dye was found to occur at pH 3. The apparent pseudo first order decolorization rate constant (kapp) value followed the order pH 3 > pH 11 > pH 9 > pH 7. As compared to available literature reduction in total organic carbon (TOC) was minimal by the time there was complete decolorization. Initial reduction in TOC was followed by subsequent increasing trend till complete decolorization. Final decreasing trend in TOC was observed only after complete decolorization. Twelve hours of treatment under experimental conditions reduced TOC content by 70% only. Discussion of results suggest that photocatalytic treatment of colored effluent under low UV intensity, and low A/V ratio may result in completely decolorized effluent but still having high COD.  相似文献   

12.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   

13.
Photooxidation degradation of Reactive Brilliant Red K‐2BP (K‐2BP) aqueous solution by ultraviolet irradiation/sodium hypochlorite (UV/NaClO) was investigated. The effects of NaClO dosage, pH, temperature and initial dye concentrations were studied. A possible degradation pathway of K‐2BP was investigated. Acidic or neutral conditions were beneficial to the decolorization of K‐2BP aqueous solution. However, alkaline conditions facilitated chemical oxygen demand (COD) removal. Increasing the solution temperature from 20 to 50°C increased the removal of color and COD. However, at 60°C, the final percentage color and COD removal decreased by approximately 17 and 10%, respectively. Based on the products indentified and theoretical analysis, N=N cleavage and C‐N cleavage were possible initial steps in the degradation of K‐2BP. From the results of this work, we conclude that treatment of UV/NaClO is an efficient method to degrade K‐2BP in aqueous solution.  相似文献   

14.
The objective of this study was to investigate the effect of salt concentration on performance of a membrane bioreactor (MBR) for treating an olefin plant wastewater. For this purpose, a lab‐scale submerged MBR with a flat‐sheet ultrafiltration membrane was used for treatment of synthetic wastewater according to oxidation and neutralization unit of olefin plant. The synthetic wastewater was adjusted to have 500 mg/L chemical oxygen demand (COD). Trials on different concentrations of sodium sulfate (Na2SO4) (0–20 000 ppm) in the feed were conducted under aerobic conditions in the MBR. The results showed that increasing the salt concentrations causes an increase in the effluent COD, phenol, and oil concentrations. These results are due to reduction of the membrane filtration efficiency and also decline in the microbial activity that it is indicated by decreasing the sOUR in MBR. But in all the trials, the effluent COD and oil concentration was well within the local discharge limit of 100 and 10 mg/L, respectively. These results indicate that the MBR system is highly efficient for treating the olefin plant wastewater, and although high salt concentrations decreased organic contaminant removal rates in the MBR, the effluent still met the discharge limits for treating the olefin plant wastewater.  相似文献   

15.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   

16.
Adsorptive removal of EDTA (ethylenediaminetetraacetic acid) from aqueous solution was studied using steam pyrolyzed activated carbon. Rubber wood sawdust, obtained from a local timber facility at Kodangavila, Trivandrum, Kerala, India was used as the precursor for the production of the activated carbon. Batch adsorption experiments were employed to monitor and optimize the removal process. The experimental parameters, i. e., solution pH, agitation time, initial EDTA concentration and adsorbent dosage, affecting the adsorption of EDTA onto sawdust activated carbon (SDAC) were optimized. The inner core mechanism for the interaction between EDTA and SDAC, which resulted in the adsorption process, was also discussed. The change in amount of EDTA adsorbed onto SDAC and CAC (commercial activated carbon) was compared over a wide range of pH (2.0–8.0). The maximum removal of EDTA took place in the pH range of 4.0–6.0 for SDAC and 5.0–5.5 for CAC, which demonstrates the effectiveness of the former adsorbent. Kinetic as well as equilibrium studies were performed to determine the rate constant and adsorption capacity, respectively. The adsorption kinetic data was fitted with pseudo‐first‐order kinetics and the equilibrium data was shown to follow the Langmuir isotherm model. These observations explain the formation of a monolayer of EDTA on the surface of SDAC as confirmed by the slow approach to equilibrium after 4 h of contact time. The adsorption capacity of SDAC for the removal of EDTA was 0.526 mmol/g and is seen to be greater than that of CAC and other reported adsorbents (0.193–0.439 mmol/g). Finally, it is clear that the production of steam pyrolyzed activated carbon in the presence of K2CO3 greatly enhanced EDTA removal and resulted in a product with possible commercial value for wastewater treatment strategies.  相似文献   

17.
This work investigates electrolytic treatment and activated carbon adsorption for the removal of melanoidins, the recalcitrant coloring component in fermentation industry wastewaters. A 10% solution of synthetic melanoidins was electrolytically reduced and simultaneously oxidized in an electrolytic cell, thereby altering its reactivity. Adsorption studies using granular activated carbon were conducted using both control and electrolyzed streams. The filterability, surface tension and capillary suction time of the samples were also determined. The reduced melanoidins stream exhibited both a high chemical oxygen demand (COD) removal of 79% and a high color removal of 77% upon activated carbon adsorption. In comparison with the oxidized fraction, the reduced samples displayed enhanced filtration flux as well as decreased capillary suction time, thus indicating better filterability. Furthermore, a decline in surface tension was also observed confirming the decreased hydrophobicity of the reduced melanoidins.  相似文献   

18.
The adsorption performance of β‐ionone on four types of granular activated carbon (GAC) in water was investigated through batch experiments. The effect of initial β‐ionone concentrations and natural organic matter (NOM) adsorbed on GAC, adsorption kinetic and isothermal models were also studied. The results showed that four types of GAC all had good adsorption performance for β‐ionone, the equilibrium adsorption amount of the GAC employed was in the order of YK > GK > MZ‐A > MZ‐B. The adsorption amount increased with increasing initial concentrations. The presence of NOM could reduce adsorption of β‐ionone to a certain extent, and small molecular weight (MW) fractions (particularly <1000 Da) exhibited a remarkably competitive effect on the adsorption of β‐ionone. The experimental data showed good correlation with pseudo‐first‐order model. Furthermore, adsorption of β‐ionone on GAC fitted Freundlich, Langmuir, and Tempkin isotherms in the range of experimental concentrations, but followed Freundlich isothermal model most appropriate. The thermodynamic parameters were calculated by the results of the experiment, which showed adsorption of β‐ionone on GAC as being endothermic and spontaneous.  相似文献   

19.
A dynamic simulation model of the Ankara central wastewater treatment plant (ACWTP) was evaluated for the prediction of effluent COD concentrations. Firstly, a mechanistic model of the municipal wastewater treatment process was developed based on Activated Sludge Model No. 1 (ASM1) by using a GPS‐X computer program. Then, the mechanistic model was combined with a feed‐forward back‐propagation neural network in parallel configuration. The appropriate architecture of the neural network models was determined through several iterative steps of training and testing of the models. Both models were run with the data obtained from the plant operation and laboratory analysis to predict the dynamic behavior of the process. Using these two models, effluent COD concentrations were predicted and the results were compared for the purpose of evaluation of treatment performance. It was observed that the ASM1 ANN model approach gave better results and better described the operational conditions of the plant than ASM1.  相似文献   

20.
The risk that benzene and toluene from spills of gasoline will impact drinking water wells is largely controlled by the natural anaerobic biodegradation of benzene and toluene. Benzene and toluene, as well as ethanol and other biofuels, are degraded under anaerobic conditions to the same pool of degradation products. Biodegradation of biofuels may produce concentrations of degradation products that make the thermodynamics for degradation of benzene and toluene infeasible under methanogenic conditions and produce larger plumes of benzene and toluene. This study evaluated the concentrations of fuel alcohols that are necessary to inhibit the anaerobic degradation of benzene and toluene under methanogenic conditions. At two ethanol spill sites, concentrations of ethanol greater ≥42 mg/L inhibited the anaerobic degradation of toluene. The pH and concentrations of acetate, dissolved inorganic carbon, and molecular hydrogen were used to calculate the Gibbs free energy for the biodegradation of toluene. In general, the anaerobic biodegradation of toluene was not thermodynamically feasible in water with ≥42 mg/L ethanol. In a microcosm study, when the concentrations of ethanol were ≥14 mg/L or the concentrations of n‐butanol were ≥16 mg/L, the biodegradation of the alcohols consistently produced concentrations of hydrogen, dissolved inorganic carbon, and acetate that would preclude natural anaerobic biodegradation of benzene and toluene by syntrophic organisms. In contrast, iso‐butanol and n‐propanol only occasionally produced conditions that would preclude the biodegradation of benzene and toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号