首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of Malachite green (MG) from aqueous solutions by cross‐linked chitosan coated bentonite (CCB) beads was investigated and the CCB beads were characterized by Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X‐ray diffraction (XRD) analysis. Solubility and swelling tests were performed in order to determine the stability of the CCB beads in acidic solution, basic solution and distilled water. The amount of MG adsorbed was shown to be influenced by the initial pH of the solution, contact time and the initial MG concentration. A kinetic study indicated that a pseudo‐second‐order model agreed well with the experimental data. From the Langmuir isotherm model, the maximum adsorption capacity of MG was found to be 435.0 mg g–1. Desorption tests were carried out at different concentrations of EDTA, H2SO4 and NaOH. However, all desorbing solutions showed zero recovery of MG at all concentrations.  相似文献   

2.
The adsorption of three cationic dyes (rhodamine B, RB; crystal violet, CV; and malachite green, MG) onto termite feces, a low‐cost adsorbent, was investigated. The adsorbent was characterized by IR spectroscopy, point of zero charge measurement, and the Boehm titration method. The adsorption follows the pseudo‐second‐order kinetic model and the Langmuir–Freundlich isotherm with maximum adsorption capacities of 95.53 mg g?1 (RB), 75.71 mg g?1 (CV), and 44.78 mg g?1 (MG). The study of thermodynamics showed that the adsorption is a spontaneous and endothermic process. This works suggest that termite feces can be used as a new low‐cost adsorbent for cationic dye removal.  相似文献   

3.
This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated and optimal experimental conditions were ascertained. The results showed that when the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of MG followed the pseudo‐second‐order rate equation and fits the Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Tempkin equations well. The maximum removal of MG was obtained at pH 6 as 99.86% for adsorbent dose of 1 g/50 mL and 25 mg L?1 initial dye concentration at room temperature. Activated carbon developed from the peel of C. sativa fruit can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.  相似文献   

4.
The adsorption kinetics of carbamazepine, naproxen, and trimethoprim in aqueous solution by Amberlite? XAD‐7 has been studied. The influence of adsorbent dose (1–3 g/L), stirring rate (80–240 rpm), pH (2–9), temperature (20–60°C), and initial concentration (25–75 ppm) on the adsorption kinetics has been analyzed. The removal efficiency in the first 2 h reaches 85% for carbamazepine, 60% for naproxen, and 70% for trimethoprim. pH appears to be the most important factor conditioning the removal of these latter solutes, whereas carbamazepine adsorption seems to be independent of the pH of the adsorptive solution. Initial concentration and operation temperature moderately influence the adsorption process. Finally, stirring rate scarcely affects the process. The experimental data have been fitted to four kinetic models, namely pseudo‐first and pseudo‐second order, intra‐particle diffusion and Bangham's. The model providing the best fit is the pseudo‐second order one. Again, pH is the factor that affects the adsorption rate in a more remarkable manner although other parameters such as temperature and stirring rate also contribute to accelerate the removal of the solutes. Under the optimal operation conditions, Amberlite? XAD‐7 exhibits a promising ability for the removal of the pharmaceuticals under study.  相似文献   

5.
This work describes the potential usability of neutralized red mud for the removal of organochlorine pesticides (OCPs) from aqueous solutions. After examination on the adsorption capability of neutralized red mud for all studied OCPs, the experiments were performed by employing aldrin as a model compound. The effect of several parameters, such as contact time, pH of the solution, initial aldrin concentration, and dosage of the adsorbent was evaluated by batch experiments. The determination of OCPs was carried out using traditional liquid–liquid extraction followed by a GC coupled with µ‐electron capture detector (GC‐µECD). The results showed that adsorption equilibrium time depended upon the initial aldrin concentration and adsorption followed the second‐order kinetic model. Kinetic study also indicated that the film diffusion mechanism was a main rate control mechanism. The removal was explained by considering the electrostatic interactions between metal oxides surface of the neutralized red mud and inductively charged centers (negative charge (d?) of chlorine atoms and positive charge (d+) of π‐cloud aromatic ring) of the aldrin molecules. In comparison to the Langmuir isotherm model, the Freundlich model better represented the adsorption data. The neutralized red mud was also succesfully employed for the removal of OCPs from real water samples, including tap water and surface (lake) water, fortified with studied OCPs.  相似文献   

6.
Batch sorption experiments were carried out for the adsorption of the basic dye Rhodamine B from aqueous solution using baryte as the adsorbent. The effect of adsorbent dosage, temperature, initial dye concentration and pH were studied. Adsorption data were modeled using first and second order kinetic equations and the intra particle diffusion model. Kinetic studies showed that the adsorption process followed second order rate kinetics with an average rate constant of 0.05458 g mg–1 min–1. Dye adsorption equilibrium was attained rapidly after 30 min of contact time. The equilibrium data was fitted to the Langmuir, Freundlich and Tempkin isotherms over a dye concentration range of 50–250 mg/L. The adsorption thermodynamic parameters showed that adsorption was an exothermic, spontaneous and less ordered arrangement process. The adsorbent, baryte, was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that baryte has good potential for the removal of Rhodamine B from dilute aqueous solution.  相似文献   

7.
The adsorption of Cu(II) ions from aqueous solutions by soda lignin as an absorbent using a batch adsorption system is presented in this paper. The soda lignin used in this study was extracted from black liquor derived from oil palm empty fruit bunches (EFB) using 20% v/v sulfuric acid. The effects of varying experimental parameters such as pH value, adsorbent dosage, different concentrations of Cu(II) ions, and agitation period were investigated. The results revealed that the optimum adsorption of Cu(II) onto soda lignin was recorded at a pH of 5.0 at an adsorbent dosage of 0.5 g soda lignin and an agitation period of 40 min. The adsorption capacities and rates of Cu(II) ions onto soda lignin was evaluated. The Langmuir and Freundlich adsorption models were applied to calculate the isotherm constants. It was found that the adsorption isothermal data could be well interpreted by the Freundlich model. The kinetic experimental data properly correlated with the pseudo‐second‐order kinetic model, which implies that chemical sorption is the rate‐limiting step.  相似文献   

8.
Zero‐valent, iron‐encapsulated alginate beads were synthesized and were applied for the removal of Cr(VI) from aqueous solutions. The effects of several important parameters including solution pH, contact time, initial concentration and reaction temperature on Cr(VI) removal levels were investigated in batch studies. An initial solution pH of 1.0 was seen to be most favorable for Cr(VI) removal. The removal process was quick and almost 80% of the removal was attained within 60 min. The kinetic data followed the second‐order equation well. The Cr(VI) removal was almost reaction temperature‐independent and decreased with an increase in Cr(VI) initial concentration. The removal of Cr(VI) by iron‐encapsulated alginate beads was found to be significantly higher than that of non‐encapsulated alginate beads.  相似文献   

9.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

10.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

11.
In this study, the removal of zinc(II) ion from an aqueous solution by pistachio shells (PS) is investigated. The dynamic behavior of the adsorption is examined on the effects of pH, adsorbent dosage, and contact time. The adsorption rates are determined quantitatively and simulated by the Lagergren first order, pseudo‐second order, Elovich, and intra‐particle diffusion kinetic models. The adsorption kinetic models are also tested for validity. The thermodynamic parameters, which are also deduced from adsorption experiments, are very useful in elucidating the nature of adsorption. The experimental results reveal that the optimum pH value and the contact time for the adsorption of Zn2+ onto PS are found as 6 and 10 min, respectively. According to these parameters, adsorption process follows the pseudo‐second order kinetic model with high correlation coefficients (R2 = 0.999). The obtained results demonstrate that PS is a reasonably effective adsorbent for the removal of Zn2+ from aqueous leachate of hazardous waste.  相似文献   

12.
The purpose of this work is the removal of basic dyes (Safranine T and Brilliant Green) from aqueous media by depolymerization products (DP) obtained from aminoglycolysis of waste poly(ethylene terephthalate) (PET). The surface morphology and physical properties of depolymerization product were also determined. Adsorption behaviors (adsorption capacities, adsorption kinetics and adsorption isotherms) of these samples were realized at room temperature. Then, the amounts of residual dye concentrations were measured using Visible Spectrophotometer at 530 and 618 nm for Safranine T (ST) and Brilliant Green (BG), respectively. All adsorption experiments were carried out for different depolymerization products (DP1, DP2, DP3, and DP4). Adsorption capacities of depolymerization products for both of dyes decrease with following order: DP2 > DP4 > DP1 > DP3. The maximum adsorption capacities for ST and BG onto DP2 sample were found to be 29 and 33 mg g?1, respectively. In addition, the adsorption kinetic results show that the pseudo‐second‐order kinetic model is more suitable than pseudo‐first‐order model for the adsorption of basic dyes onto DP samples. Adsorption data were evaluated using Langmuir and Freundlich adsorption isotherm models. The results revealed that the adsorption of basic dyes onto DP sample fit very well Langmuir isotherm model. In conclusion, the depolymerization products of post‐consumer PET bottles can be used as low cost adsorbent for the removal of basic dyes from wastewaters.  相似文献   

13.
The removal of three basic dyes by adsorption onto bentonite was investigated for single, binary, and ternary solutions in a batch system. Before and after dye adsorption, bentonite samples were analyzed by using X‐ray fluorescence spectrometer, SEM, and Fourier transform IR spectrometry. The D‐optimal design and response surface methodology were applied in designing the experiments for evaluating the interactive effects of each initial concentrations variable of the dyes in binary systems. Predicted values were found to be in good agreement with experimental values, which defined propriety of the model and the achievement of D‐optimal in optimization of adsorption of binary dye systems. The competitive adsorption results showed that the adsorption amount of a dye was suppressed in the presence and increasing concentrations of second or third dye. For mono‐component isotherm modeling, Langmuir and Freundlich models were applied to equilibrium data of single, binary, and ternary dye solutions, while modified Langmuir, Sheindrof–Rebhun–Sheintuch and modified extended Freundlich models were also applied to equilibrium data of binary dye solutions for multi‐component isotherm modeling. The results showed that the Langmuir was the more suitable model for single dye systems while extended Freundlich model fitted best to the experimental data with the lowest error values for multi‐dye systems.  相似文献   

14.
Batch kinetic studies were carried out for the removal of safranin from aqueous solution using a biomatrix prepared from rice husk. The adsorption kinetic data were modeled using the pseudo‐first‐order and pseudo‐second‐order kinetic equations. The linear and non‐linear forms of these two widely used kinetic models were compared in this study. In order to determine the best‐fitting equation, the coefficient of determination (r2), the sum of the squares of the errors (SSE), sum of the absolute errors (SAE), average relative error (ARE), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), and the Chi‐squared test (χ2) were used as error analysis methods. Results showed that the non‐linear forms of pseudo‐first‐order and pseudo‐second‐order models were more suitable than the linear forms for fitting the experimental data. Non‐linear method is thus more appropriate for estimating the kinetic parameters and should primarily be used to describe adsorption kinetics.  相似文献   

15.
The adsorption of Ni(II) from aqueous solutions using base treated cogon grass or Imperata cylindrica (NHIC) was performed under batch and column modes. Batch experiments were conducted to determine the factors affecting adsorption such as pH, adsorbent dosage, initial nickel concentration, contact time and temperature. The fixed‐bed column experiment was performed to determine the practical applicability of NHIC and to obtain the breakthrough curve. Adsorption was fast as equilibrium was achieved within 60 min, and was best described by the pseudo second order model. According to the Langmuir model, a maximum adsorption capacity of 6.96 mg/g was observed at pH 5 and at a temperature of 313 K. Thermodynamic parameters such as ΔG0, ΔH0 and ΔS0 were calculated, and indicated that adsorption was a spontaneous and endothermic process. The mechanistic pathway of Ni(II) uptake was examined by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) spectroscopy. The Thomas and Yoon‐Nelson models were used to analyze the fixed‐bed column data.  相似文献   

16.
The effects of various parameters such as initial concentration, adsorbent loading, pH, and contact time on kinetics and equilibrium of adsorption of Cd2+ metal ion from its aqueous solution by castor seed hull (CSH) and also by activated carbon have been investigated by batch adsorption experiments. The amount of adsorption increases with initial metal ion concentration, contact time, solution pH, and the loading of adsorbent for both the systems. Kinetic experiments indicate that adsorption of cadmium metal ion on both CSH and on activated carbon consists of three steps – a rapid adsorption of cadmium metal ion, a transition phase, and an almost flat plateau region. This has also been confirmed by the intraparticle diffusion model. The lumped kinetic results show that the cadmium adsorption process follows a pseudo‐second order rate law. The kinetic parameters including the rate constant are determined at different initial metal ion concentrations, pH, amount, and type of adsorbent, respectively. The Langmuir and Freundlich adsorption isotherm models are used to describe the experimental data. The Langmuir model yields a better correlation coefficient than the other model. A comparison of the monolayer adsorption capacity (qm) of CSH, activated carbon, and several other reported adsorbents has been provided. The value of separation factor (RL) calculated from the Langmuir equation also gives an indication of favorable adsorption of the metal ion. From comparative studies, it has been found that CSH is a potentially attractive adsorbent than commercial activated carbon for cadmium metal ion (Cd2+) removal.  相似文献   

17.
Coconut coir pith, a lignocellulosic polymer, is an unwanted by‐product of the coir fiber industry. The pith was used as a biosorbent for the removal of Molybdenum(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. The optimum pH for maximum adsorption of Mo(VI) was found to be 3.0. Langmuir, Freundlich and Dubinin Radushkevich isotherms were used to model the adsorption equilibrium data and the system was seen to follow all three isotherms. The Langmuir adsorption capacity of the biosorbent was found to be 57.5 mg g–1. Kinetic studies showed that the adsorption generally obeyed a second‐order kinetic model. Desorption studies showed that the recovery of Mo(VI) from the spent adsorbent was feasible. The effect of foreign anions on the adsorption of Mo(VI) was also examined.  相似文献   

18.
19.
In India, the annual production of tea is ca. 857,000 tonnes, which is 27.4% of the total world production. The amount of tea factory waste (TFW) produced per annum after processing is ca. 190,400 tonnes. TFW can be used as a low cost adsorbent for the removal of toxic metals from the aqueous phase. An investigation was carried out to study the feasibility of the use of TFW as an adsorbent for the removal of the heavy metal, zinc. Equilibrium, kinetic and thermodynamic studies were reported. The straight line plot of log (qeq) versus time t for the adsorption of zinc shows the validity of the Lagergren equation. The various steps involved in adsorbate transport from the solution to the surface of the adsorbent particles were dealt with by using a Weber‐Morris plot, qe versus t0.5 for the TFW. The rate controlling parameters, kid,1 and kid,2, were determined and it was found that the macro‐pore diffusion rate was much larger than micro‐pore diffusion rate. A batch sorption model, which assumes the pseudo‐second‐order mechanism, was used to predict the rate constant of sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc (II) ion concentration. Equilibrium data obtained from the experiments were analyzed with various isotherms, i. e., Freundlich, Langmuir, Redlich‐Peterson and Tempkin. The adsorption equilibrium was reached in 30 min and the adsorption data fitted well to all models. The maximum adsorption capacity of TFW for zinc (II) ions was determined to be 14.2 mg/g. The capacity of adsorption on Zn(II) increased with increasing temperatures and pH. The maximum uptake level of zinc was observed at pH of 4.2. The various thermodynamic parameters, i. e., ΔG°, ΔH° and ΔS°, were estimated. The thermodynamics of the zinc ion/TFW system indicated a spontaneous, endothermic and random nature of the process. The results showed that the TFW, which has low economical value, is a suitable adsorbent for the removal of zinc (II) ions from aqueous solutions.  相似文献   

20.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号